ﻻ يوجد ملخص باللغة العربية
The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of dense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H2 column densities for each clump from Herschel Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N2H+, HCO+, HCN and HNC (1-0) lines, and derive the column densities and abundances of N2H+ and HCO+. The Herschel dust temperatures increase as a function of the IR-based Spitzer evolutionary classification scheme, with the youngest clumps being the coldest, which gives confidence that this classification method provides a reliable way to assign evolutionary stages to clumps. Both N2H+ and HCO+ abundances increase as a function of evolutionary stage, whereas the N2H+ (1-0) to HCO+ (1-0) integrated intensity ratios show no discernable trend. The HCN (1-0) to HNC(1-0) integrated intensity ratios show marginal evidence of an increase as the clumps evolve.
Massive star-forming regions with observed infall motions are good sites for studying the birth of massive stars. In this paper, 405 compact sources have been extracted from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) compact source
Theoretical models suggest that massive stars form via disk-mediated accretion, with bipolar outflows playing a fundamental role. A recent study toward massive molecular outflows has revealed a decrease of the SiO line intensity as the object evolves
(Abridged) We present a large sample of o-H$_2$D$^+$ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through diff
This paper reviews the first results of observations of H2O line emission with Herschel-HIFI towards high-mass star-forming regions, obtained within the WISH guaranteed time program. The data reveal three kinds of gas-phase H2O: `cloud water in cold
Hydrogen fluoride has been established to be an excellent tracer of molecular hydrogen in diffuse clouds. In denser environments, however, the HF abundance has been shown to be approximately two orders of magnitude lower. We present Herschel/HIFI obs