ترغب بنشر مسار تعليمي؟ اضغط هنا

On the (non)existence of symplectic resolutions for imprimitive symplectic reflection groups

255   0   0.0 ( 0 )
 نشر من قبل Travis Schedler
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the existence of symplectic resolutions of quotient singularities V/G where V is a symplectic vector space and G acts symplectically. Namely, we classify the symplectically irreducible and imprimitive groups, excluding those of the form $K rtimes S_2$ where $K < SL_2(C)$, for which the corresponding quotient singularity admits a projective symplectic resolution. As a consequence, for $dim V eq 4$, we classify all quotient singularities $V/G$ admitting a projective symplectic resolution which do not decompose as a product of smaller-dimensional quotient singularities, except for at most four explicit singularities, that occur in dimensions at most 10, for whom the question of existence remains open.



قيم البحث

اقرأ أيضاً

154 - Tanja Becker 2009
We compute the symplectic reductions for the action of Sp_2n on several copies of C^2n and for all coregular representations of Sl_2. If it exists we give at least one symplectic resolution for each example. In the case Sl_2 acting on sl_2+C^2 we obt ain an explicit description of Fus and Namikawas example of two non-equivalent symplectic resolutions connected by a Mukai flop.
In this article we consider the connected component of the identity of $G$-character varieties of compact Riemann surfaces of genus $g > 0$, for connected complex reductive groups $G$ of type $A$ (e.g., $SL_n$ and $GL_n$). We show that these varietie s are symplectic singularities and classify which admit symplectic resolutions. The classification reduces to the semi-simple case, where we show that a resolution exists if and only if either $g=1$ and $G$ is a product of special linear groups of any rank and copies of the group $PGL_2$, or if $g=2$ and $G = (SL_2)^m$ for some $m$.
Recently, Herbig--Schwarz--Seaton have shown that $3$-large representations of a reductive group $G$ give rise to a large class of symplectic singularities via Hamiltonian reduction. We show that these singularities are always terminal. We show that they are $mathbb{Q}$-factorial if and only if $G$ has finite abelianization. When $G$ is connected and semi-simple, we show they are actually locally factorial. As a consequence, the symplectic singularities do not admit symplectic resolutions when $G$ is semi-simple. We end with some open questions.
For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $omega_xi^s$, where $xi in mathfrak{t}^*_+$ is in the positive Weyl chamber and $s in mathbb{R}$. The symplectic form $omega_xi^0$ is identified wit h the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $xi$. The cohomology class of $omega_xi^s$ is independent of $s$ for a fixed value of $xi$. In this paper, we show that as $sto -infty$, the symplectic volume of $omega_xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinre nken, and show it can be interpreted in algebro-geometric terms. A key ingredient is the `universal cut of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا