ﻻ يوجد ملخص باللغة العربية
What are cosmic particles and where do they come from? These are questions which are not only fascinating for scientists in astrophysics. With the CosMO experiment (Cosmic Muon Observer) students can autonomously study these particles. They can perform their own hands-on experiments to become familiar with modern scientific working methods and to obtain a direct insight into astroparticle physics. In this contribution we present the experimental setup and possible measurements. The detector consists of three scintillator boxes. Events are triggered and read out by a data acquisition board developed for the QuarkNet Project. With a Python program running on a netbook under Linux, the trigger and data taking conditions can be defined. The program displays the particle rates in real-time and stores the data for offline analysis. Possible student experiments are the measurement of cosmic particle rates dependent on the zenith angle, the distribution of geometrical size of particle showers, and the lifetime of muons. Twenty CosMO detectors have been built at DESY. They are used within the German outreach network Netzwerk Teilchenwelt at 15 astroparticle-research institutes and universities for project work with students.
A configurable trigger scaler and delay NIM module has been designed to equip nuclear physics experiments and lab teaching classes. It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions
This book is an attempt to help students transform all of the concepts of quantum mechanics into concrete computer representations, which can be constructed, evaluated, analyzed, and hopefully understood at a deeper level than what is possible with m
Interest in Radio-based detection schemes for ultra-high energy cosmic rays (UHECR) has surged in recent years, owing to the potentially very low cost/detection ratio. The method of radio-frequency (RF) scatter has been proposed as potentially the mo
Kinetic Inductance Detectors (KIDs) are superconductive low$-$temperature detectors useful for astrophysics and particle physics. We have developed arrays of lumped elements KIDs (LEKIDs) sensitive to microwave photons, optimized for the four horn-co
The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m$^{2}$ underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m$^{2}$ as the surface array. At 100 TeV, cosmic-ray ba