ترغب بنشر مسار تعليمي؟ اضغط هنا

CosMO - A Cosmic Muon Observer Experiment for Students

168   0   0.0 ( 0 )
 نشر من قبل Timo Karg
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

What are cosmic particles and where do they come from? These are questions which are not only fascinating for scientists in astrophysics. With the CosMO experiment (Cosmic Muon Observer) students can autonomously study these particles. They can perform their own hands-on experiments to become familiar with modern scientific working methods and to obtain a direct insight into astroparticle physics. In this contribution we present the experimental setup and possible measurements. The detector consists of three scintillator boxes. Events are triggered and read out by a data acquisition board developed for the QuarkNet Project. With a Python program running on a netbook under Linux, the trigger and data taking conditions can be defined. The program displays the particle rates in real-time and stores the data for offline analysis. Possible student experiments are the measurement of cosmic particle rates dependent on the zenith angle, the distribution of geometrical size of particle showers, and the lifetime of muons. Twenty CosMO detectors have been built at DESY. They are used within the German outreach network Netzwerk Teilchenwelt at 15 astroparticle-research institutes and universities for project work with students.



قيم البحث

اقرأ أيضاً

A configurable trigger scaler and delay NIM module has been designed to equip nuclear physics experiments and lab teaching classes. It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions without any Hardware Description Language (HDL) required knowledge. The design, performances and typical applications are presented.
156 - Roman Schmied 2014
This book is an attempt to help students transform all of the concepts of quantum mechanics into concrete computer representations, which can be constructed, evaluated, analyzed, and hopefully understood at a deeper level than what is possible with m ore abstract representations. It was written for a Masters and PhD lecture given yearly at the University of Basel, Switzerland. The goal is to give a language to the student in which to speak about quantum physics in more detail, and to start the student on a path of fluency in this language. On our journey we approach questions such as: -- You already know how to calculate the energy eigenstates of a single particle in a simple one-dimensional potential. How can such calculations be generalized to non-trivial potentials, higher dimensions, and interacting particles? -- You have heard that quantum mechanics describes our everyday world just as well as classical mechanics does, but have you ever seen an example where such behavior is calculated in detail and where the transition from classical to quantum physics is evident? -- How can we describe the internal spin structure of particles? How does this internal structure couple to the particles motion? -- What are qubits and quantum circuits, and how can they be assembled to simulate a future quantum computer?
54 - S Prohira , D Besson , S Kunwar 2017
Interest in Radio-based detection schemes for ultra-high energy cosmic rays (UHECR) has surged in recent years, owing to the potentially very low cost/detection ratio. The method of radio-frequency (RF) scatter has been proposed as potentially the mo st economical detection technology. Though the first dedicated experiment to employ this method, the Telescope Array RADAR experiment (TARA), reported no signal, efforts to develop more robust and sensitive trigger techniques continue. This paper details the development of a time-domain firmware trigger that exploits characteristics of the expected scattered signal from an UHECR extensive-air shower (EAS). The improved sensitivity of this trigger is discussed, as well as implementation in two separate field deployments from 2016-2017.
Kinetic Inductance Detectors (KIDs) are superconductive low$-$temperature detectors useful for astrophysics and particle physics. We have developed arrays of lumped elements KIDs (LEKIDs) sensitive to microwave photons, optimized for the four horn-co upled focal planes of the OLIMPO balloon-borne telescope, working in the spectral bands centered at 150 GHz, 250 GHz, 350 GHz, and 460 GHz. This is aimed at measuring the spectrum of the Sunyaev-Zeldovich effect for a number of galaxy clusters, and will validate LEKIDs technology in a space-like environment. Our detectors are optimized for an intermediate background level, due to the presence of residual atmosphere and room--temperature optical system and they operate at a temperature of 0.3 K. The LEKID planar superconducting circuits are designed to resonate between 100 and 600 MHz, and to match the impedance of the feeding waveguides; the measured quality factors of the resonators are in the $10^{4}-10^{5}$ range, and they have been tuned to obtain the needed dynamic range. The readout electronics is composed of a $cold$ $part$, which includes a low noise amplifier, a dc$-$block, coaxial cables, and power attenuators; and a $room-temperature$ $part$, FPGA$-$based, including up and down-conversion microwave components (IQ modulator, IQ demodulator, amplifiers, bias tees, attenuators). In this contribution, we describe the optimization, fabrication, characterization and validation of the OLIMPO detector system.
80 - Y. Zhang , Q.-B. Gou , H. Cai 2017
The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m$^{2}$ underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m$^{2}$ as the surface array. At 100 TeV, cosmic-ray ba ckground events can be rejected by approximately 99.99%, according to the full Monte Carlo (MC) simulation for $gamma$-ray observations. In order to use the muon detector efficiently, we propose to extend the surface array area to 72900 m$^{2}$ by adding 120 scintillator detectors around the current array to increase the effective detection area. A new prototype scintillator detector is developed via optimizing the detector geometry and its optical surface, by selecting the reflective material and adopting dynode readout. This detector can meet our physics requirements with a positional non-uniformity of the output charge within 10% (with reference to the center of the scintillator), time resolution FWHM of $sim$2.2 ns, and dynamic range from 1 to 500 minimum ionization particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا