ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of local electric polarization and its relation to internal strain: impact on the polarization potential and electronic properties of group-III nitrides

112   0   0.0 ( 0 )
 نشر من قبل Miguel A. Caro
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theory of local electric polarization in crystalline solids and apply it to study the case of wurtzite group-III nitrides. We show that a local value of the electric polarization, evaluated at the atomic sites, can be cast in terms of a summation over nearest-neighbor distances and Born effective charges. Within this model, the local polarization shows a direct relation to internal strain and can be expressed in terms of internal strain parameters. The predictions of the present theory show excellent agreement with a formal Berry phase calculation for random distortions of a test-case CuPt-like InGaN alloy and InGaN supercells with randomly placed cations. While the present level of theory is appropriate for highly ionic compounds, we show that a more complex model is needed for less ionic materials, in which the strain dependence of Born effective charges has to be taken into account. Moreover, we provide ab initio parameters for GaN, InN and AlN, including hybrid functional values for the piezoelectric coefficients and the spontaneous polarization, which we use to accurately implement the local theory expressions. In order to calculate the local polarization potential, we also present a point dipole method. This method overcomes several limitations related to discretization and resolution which arise when obtaining the local potential by solving Poissons equation on an atomic grid. Finally, we perform tight-binding supercell calculations to assess the impact of the local polarization potential arising from alloy fluctuations on the electronic properties of InGaN alloys. In particular, we find that the large upward bowing with composition of the InGaN valence band edge is strongly influenced by local polarization effects. Furthermore, our analysis allows us to extract composition-dependent bowing parameters for the energy gap and valence and conduction band edges.



قيم البحث

اقرأ أيضاً

167 - Yanpeng Yao , Huaxiang Fu 2008
The $phi(kpp)sim kpp$ relation is called polarization structure. By density functional calculations, we study the polarization structure in ferroelectric perovskite PbTiO$_3$, revealing (1) the $kpp$ point that contributes most to the electronic pola rization, (2) the magnitude of bandwidth, and (3) subtle curvature of polarization dispersion. We also investigate how polarization structure in PbTiO$_3$ is modified by compressive inplane strains. The bandwidth of polarization dispersion in PbTiO$_3$ is shown to exhibit an unusual decline, though the total polarization is enhanced. As another outcome of this study, we formulate an analytical scheme for the purpose of identifying what determine the polarization structure at arbitrary $kpp$ points by means of Wannier functions. We find that $phi(kpp)$ is determined by two competing factors: one is the overlaps between neighboring Wannier functions within the plane {it perpendicular} to the polarization direction, and the other is the localization length {it parallel} to the polarization direction. Inplane strain increases the former while decreases the latter, causing interesting non-monotonous effects on polarization structure. Finally, polarization dispersion in another paradigm ferroelectric BaTiO$_3$ is discussed and compared with that of PbTiO$_3$.
The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO3, KNbO3, PbTiO3 and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their link with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study ferroelectric order when standard techniques to measure polarization are not easily applied.
205 - J. Klein , A. Kerelsky , M. Lorke 2019
Intrinsic and extrinsic disorder from lattice imperfections, substrate and environment has a strong effect on the local electronic structure and hence the optical properties of atomically thin transition metal dichalcogenides that are determined by s trong Coulomb interaction. Here, we examine the role of the substrate material and intrinsic defects in monolayer MoS2 crystals on SiO2 and hBN substrates using a combination of scanning tunneling spectroscopy, scanning tunneling microscopy, optical absorbance, and low-temperature photoluminescence measurements. We find that the different substrates significantly impact the optical properties and the local density of states near the conduction band edge observed in tunneling spectra. While the SiO2 substrates induce a large background doping with electrons and a substantial amount of band tail states near the conduction band edge of MoS2, such states as well as the high doping density are absent using high quality hBN substrates. By accounting for the substrate effects we obtain a quasiparticle gap that is in excellent agreement with optical absorbance spectra and we deduce an exciton binding energy of about 480 meV. We identify several intrinsic lattice defects that are ubiquitious in MoS2, but we find that on hBN substrates the impact of these defects appears to be passivated. We conclude that the choice of substrate controls both the effects of intrinsic defects and extrinsic disorder, and thus the electronic and optical properties of MoS2. The correlation of substrate induced disorder and defects on the electronic and optical properties of MoS2 contributes to an in-depth understanding of the role of the substrates on the performance of 2D materials and will help to further improve the properties of 2D materials based quantum nanosystems.
By means of first-principles calculations, the structural stability, mechanical properties and electronic structure of the newly synthesized incompressible Re2C, Re2N, Re3N and an analogous compound Re3C have been investigated. Our results agree well with the available experimental and theoretical data. The proposed Re3C is shown to be energetically, mechanically and dynamically stable and also incompressible. Furthermore, it is suggested that the incompressibility of these compounds is originated from the strong covalent bonding character with the hybridization of 5d orbital of Re and the 2p orbital of C or N, and a zigzag topology of interconnected bonds, e.g., Re-Re, Re-C or Re-N bonding.
Ferroelectric BaTiO3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 deg C wide. The deposition temperature critically affects the growth kinetics and thermodynamics balance, resulting on a high impact in the strain of the BaTiO3 polar axis, which can exceed 2% in films thicker than 100 nm. The ferroelectric polarization scales with the strain and therefore deposition temperature can be used as an efficient tool to tailor ferroelectric polarization. The developed strategy overcomes the main limitations of the conventional strain engineering methodologies based on substrate selection: it can be applied to films on specific substrates including Si(001) and perovskites, and it is not restricted to ultrathin films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا