ﻻ يوجد ملخص باللغة العربية
We study the free energy landscape of a minimal model for relaxor ferroelectrics. Using a variational method which includes leading correlations beyond the mean-field approximation as well as disorder averaging at the level of a simple replica theory, we find metastable paraelectric states with a stability region that extends to zero temperature. The free energy of such states exhibits an essential singularity for weak compositional disorder pointing to their necessary occurrence. Ferroelectric states appear as local minima in the free energy at high temperatures and become stable below a coexistence temperature $T_c$. We calculate the phase diagram in the electric field-temperature plane and find a coexistence line of the polar and non-polar phases which ends at a critical point. First-order phase transitions are induced for fields sufficiently large to cross the region of stability of the metastable paraelectric phase. These polar and non-polar states have distinct structure factors from those of conventional ferroelectrics. We use this theoretical framework to compare and to gain physical understanding of various experimental results in typical relaxors.
We study a minimal model for a relaxor ferroelectric including dipolar interactions, and short-range harmonic and anharmonic forces for the critical modes as in the theory of pure ferroelectrics together with quenched disorder coupled linearly to the
Relaxor ferroelectrics are difficult to study and understand. The experiment shows that at low energy scattering there is an acoustic mode, an optic mode, dynamic quasi-elastic scattering and strictly elastic scattering as well as Bragg peaks at the
Polarization switching mechanisms in ferroelectric materials are fundamentally linked to local domain structure and presence of the structural defects, which both can act as nucleation and pinning centers and create local electrostatic and mechanical
The complex interaction between transverse acoustic (TA) phonon, transverse optic (TO) phonon and polar nano-domains (PND) in the relaxor ferroelectric KTa1-xNbxO3 (KTN) is studied by means of high resolution diffuse and inelastic neutron scattering.
Relaxor ferrolectrics are important in technological applications due to a strong electromechanical response, energy storage capacity, electrocaloric effect, and pyroelectric energy conversion properties. Current efforts to discover and design new ma