ﻻ يوجد ملخص باللغة العربية
We have observed a cluster forming clump (MM3) associated with the infrared dark cloud G34.43+00.24 in the 1.3 mm continuum and the CH3OH, CS, 13CS, SiO, CH3CH2CN, and HCOOCH3 lines with the Atacama Large Millimeter/submillimeter Array and in K-band with the Keck telescope. We have found a young outflow toward the center of this clump in the SiO, CS, and CH3OH lines. This outflow is likely driven by a protostar embedded in a hot core, which is traced by the CH3CH2CN, HCOOCH3, 13CS, and high excitation CH3OH lines. The size of the hot core is about 800 x 300 AU in spite of its low mass (<1.1 M_sun), suggesting a high accretion rate or the presence of multiple star system harboring a few hot corinos. The outflow is highly collimated, and the dynamical timescale is estimated to be less than 740 yr. In addition, we have also detected extended emission of SiO, CS, and CH3OH, which is not associated with the hot core and the outflow. This emission may be related to past star formation activity in the clump. Although G34.43+00.24 MM3 is surrounded by a dark feature in infrared, it has already experienced active formation of low-mass stars in an early stage of clump evolution.
The fragmentation of a molecular cloud that leads to the formation of high-mass stars occurs on a hierarchy of different spatial scales. The large molecular clouds harbour massive molecular clumps with massive cores embedded in them. The fragmentatio
We have used deep near-infrared observations with adaptive optics to discover a distributed population of low-mass protostars within the filamentary Infrared Dark Cloud G34.43+00.24. We use maps of dust emission at multiple wavelengths to determine t
We performed a multiwavelength study toward infrared dark cloud (IRDC) G34.43+0.24. New maps of 13CO $J$=1-0 and C18}O J=1-0 were obtained from the Purple Mountain Observatory (PMO) 13.7 m radio telescope. At 8 um (Spitzer - IRAC), IRDC G34.43+0.24 a
We present ALMA and VLA observations of the molecular and ionized gas at 0.1-0.3 arcsec resolution in the Class 0 protostellar system IRAS 16293-2422. These data clarify the origins of the protostellar outflows from the deeply embedded sources in thi
We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm observations of four young, eruptive star-disk systems at 0.4 resolution: two FUors (V582 Aur and V900 Mon), one EXor (UZ Tau E) and one source with an ambiguous FU/EXor classifica