ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping our Universe in 3D with MITEoR

94   0   0.0 ( 0 )
 نشر من قبل Haoxuan Zheng
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral hydrogen has the potential to overtake the cosmic microwave background as our most powerful cosmological probe, because it can map a much larger volume of our Universe, shedding new light on the epoch of reionization, inflation, dark matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder low-frequency radio interferometer whose goal is to test technologies that greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR accomplishes this by using massive baseline redundancy both to enable automated precision calibration and to cut the correlator cost scaling from N^2 to NlogN, where N is the number of antennas. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious HERA project, which would incorporate many identical or similar technologies using an order of magnitude more antennas, each with dramatically larger collecting area.



قيم البحث

اقرأ أيضاً

According to General Relativity (GR) a universe with a cosmological constant, Lambda, like ours, is trapped inside an event horizon r< sqrt(3/Lambda). What is outside? We show, using Israel (1967) junction conditions, that there could be a different universe outside. Our Universe looks like a Black Hole for an outside observer. Outgoing radial null geodesics can not escape our universe, but incoming photons can enter and leave an imprint on our CMB sky. We present a picture of such a fossil record from the analysis of CMB maps that agrees with the Black Hole universe predictions but challenge our understanding of the origin of the primordial universe.
We present a new method for interferometric imaging that is ideal for the large fields of view and compact arrays common in 21 cm cosmology. We first demonstrate the method with simulations for two very different low frequency interferometers, the Mu rchison Widefield Array (MWA) and the MIT Epoch of Reionization (MITEoR) Experiment. We then apply the method to the MITEoR data set collected in July 2013 to obtain the first northern sky map from 128 MHz to 175 MHz at about 2 degree resolution, and find an overall spectral index of -2.73+/-0.11. The success of this imaging method bodes well for upcoming compact redundant low-frequency arrays such as HERA. Both the MITEoR interferometric data and the 150 MHz sky map are publicly available at http://space.mit.edu/home/tegmark/omniscope.html.
111 - B. S. Koribalski 2016
Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morp hology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.
Motivated by string dualities we propose topological gravity as the early phase of our universe. The topological nature of this phase naturally leads to the explanation of many of the puzzles of early universe cosmology. A concrete realization of thi s scenario using Wittens four dimensional topological gravity is considered. This model leads to the power spectrum of CMB fluctuations which is controlled by the conformal anomaly coefficients $a,c$. In particular the strength of the fluctuation is controlled by $1/a$ and its tilt by $c g^2$ where $g$ is the coupling constant of topological gravity. The positivity of $c$, a consequence of unitarity, leads automatically to an IR tilt for the power spectrum. In contrast with standard inflationary models, this scenario predicts $mathcal{O}(1)$ non-Gaussianities for four- and higher-point correlators and the absence of tensor modes in the CMB fluctuations.
We present a state-of-the-art report on visualization in astrophysics. We survey representative papers from both astrophysics and visualization and provide a taxonomy of existing approaches based on data analysis tasks. The approaches are classified based on five categories: data wrangling, data exploration, feature identification, object reconstruction, as well as education and outreach. Our unique contribution is to combine the diverse viewpoints from both astronomers and visualization experts to identify challenges and opportunities for visualization in astrophysics. The main goal is to provide a reference point to bring modern data analysis and visualization techniques to the rich datasets in astrophysics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا