ﻻ يوجد ملخص باللغة العربية
We present a 625 MHz clocked coherent one-way quantum key distribution (QKD) system which continuously distributes secret keys over an optical fibre link. To support high secret key rates, we implemented a fast hardware key distillation engine which allows for key distillation rates up to 4 Mbps in real time. The system employs wavelength multiplexing in order to run over only a single optical fibre and is compactly integrated in 19-inch 2U racks. We optimized the system considering a security analysis that respects finite-key-size effects, authentication costs, and system errors. Using fast gated InGaAs single photon detectors, we reliably distribute secret keys with rates up to 140 kbps and over 25 km of optical fibre, for a security parameter of 4E-9.
A security evaluation against the finite-key-size effect was performed for a commercial plug-and-play quantum key distribution (QKD) system. We demonstrate the ability of an eavesdropper to force the system to distill key from a smaller length of sif
One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side- channel attacks. To overcome this problem, researchers proposed an elegant time-reversal QKD protocol called measurement-device-independent QKD (MDI-QK
Network integration of quantum key distribution is crucial for its future widespread deployment due to the high cost of using optical fibers dedicated for the quantum channel, only. We studied the performance of a system running a simplified BB84 pro
Quantum key distribution (QKD) is a pioneering quantum technology on the brink of widespread deployment. Nevertheless, the distribution of secret keys beyond a few 100 kilometers at practical rates remains a major challenge. One approach to circumven
It has been shown that in the asymptotic case of infinite-key length the 2-decoy state QKD protocol outperforms the 1-decoy state protocol. Here, we present a finite-key analysis of the 1-decoy method. Interestingly, we find that for practical block