Radial migration in a bar-dominated disk galaxy I: Impact on chemical evolution


الملخص بالإنكليزية

We study radial migration and chemical evolution in a bar-dominated disk galaxy, by analyzing the results of a fully self-consistent, high resolution N-body+SPH simulation. We find different behaviours for gas and star particles. Gas within corotation is driven in the central regions by the bar, where it forms a pseudo-bulge (disky-bulge), but it undergoes negligible radial displacement outside the bar region. Stars undergo substantial radial migration at all times, caused first by transient spiral arms and later by the bar. Despite the important amount of radial migration occurring in our model, its impact on the chemical properties is limited. The reason is the relatively flat abundance profile, due to the rapid early evolution of the whole disk. We show that the implications of radial migration on chemical evolution can be studied to a good accuracy by post-processing the results of the N-body+SPH calculation with a simple chemical evolution model having detailed chemistry and a parametrized description of radial migration. We find that radial migration impacts on chemical evolution both directly (by moving around the long-lived agents of nucleosynthesis, like e.g. SNIa or AGB stars, and thus altering the abundance profiles of the gas) and indirectly (by moving around the long-lived tracers of chemical evolution and thus affecting stellar metallicity profiles, local age-metallicity relations and metallicity distributions of stars, etc.).

تحميل البحث