ﻻ يوجد ملخص باللغة العربية
We calculate the angular correlation function for a sample of 170,000 AGN extracted from the Wide-field Infrared Survey Explorer (WISE) catalog, selected to have red mid-IR colors (W1 - W2 > 0.8) and 4.6 micron flux densities brighter than 0.14 mJy). The sample is expected to be >90% reliable at identifying AGN, and to have a mean redshift of z=1.1. In total, the angular clustering of WISE-AGN is roughly similar to that of optical AGN. We cross-match these objects with the photometric SDSS catalog and distinguish obscured sources with (r - W2) > 6 from bluer, unobscured AGN. Obscured sources present a higher clustering signal than unobscured sources. Since the host galaxy morphologies of obscured AGN are not typical red sequence elliptical galaxies and show disks in many cases, it is unlikely that the increased clustering strength of the obscured population is driven by a host galaxy segregation bias. By using relatively complete redshift distributions from the COSMOS survey, we find obscured sources at mean redshift z=0.9 have a bias of b = 2.9 pm 0.6 and are hosted in dark matter halos with a typical mass of log(M/M_odot)~13.5. In contrast, unobscured AGN at z~1.1 have a bias of b = 1.6 pm 0.6 and inhabit halos of log(M/M_odot)~12.4. These findings suggest that obscured AGN inhabit denser environments than unobscured AGN, and are difficult to reconcile with the simplest AGN unification models, where obscuration is driven solely by orientation.
Recent studies of luminous infrared-selected active galactic nuclei (AGN) suggest that the reddest, most obscured objects display a higher angular clustering amplitude, and thus reside in higher-mass dark matter halos. This is a direct contradiction
We present our statistical study of near infrared (NIR) variability of X-ray selected Active Galactic Nuclei (AGN) in the COSMOS field, using UltraVISTA data. This is the largest sample of AGN light curves in YJHKs bands, making possible to have a gl
We present a spectroscopically complete sample of 147 infrared-color-selected AGN down to a 22 $mu$m flux limit of 20 mJy over the $sim$270 deg$^2$ of the SDSS Stripe 82 region. Most of these sources are in the QSO luminosity regime ($L_{rm bol} gtrs
The angular correlation function is a powerful tool for deriving the clustering properties of AGN and hence the mass of the corresponding dark matter halos in which they reside. However, studies based on the application of the angular correlation fun
Clustering measurements of obscured and unobscured quasars show that obscured quasars reside in more massive dark matter halos than their unobscured counterparts. These results are inconsistent with simple unified (torus) scenarios, but might be expl