ﻻ يوجد ملخص باللغة العربية
We have found that the conformally coupled induced gravity can be an infrared fixed point of induced gravity with Yukawa couplings with matter. The late time cosmology with a uniform mean matter distribution can be described by the conformally coupled induced gravity, which has an emergent global conformal symmetry in the cosmic scale. Aiming to resolve the puzzles for the dark energy, we have obtained exact cosmological equations and determined the dark energy density, the matter density, and the jerk parameter in the present universe based on the recent observational cosmic expansion data for $a/H^{2}$.
It is found that conformally coupled induced gravity with gradient torsion gives a dilaton gravity in Riemann geometry. In the Einstein frame of the dilaton gravity the conformal symmetry is hidden and a non-vanishing cosmological constant is not pla
In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity [1]. When the scalar field vacuum is in a broken symmetry state, an effective gravitational c
In this work by using a numerical analysis, we investigate in a quantitative way the late-time dynamics of scalar coupled $f(R,mathcal{G})$ gravity. Particularly, we consider a Gauss-Bonnet term coupled to the scalar field coupling function $xi(phi)$
We consider modifications of general relativity characterized by a special noncovariant constraint on metric coefficients, which effectively generates a perfect-fluid type of matter stress tensor in Einstein equations. Such class of modified gravity
We use the ideas of entropic gravity to derive the FRW cosmological model and show that for late time evolution we have an effective cosmological constant. By using the first law of thermodynamics and the modified entropy area relationship derived fr