ترغب بنشر مسار تعليمي؟ اضغط هنا

Reversed Hardy-Littewood-Sobolev inequality

123   0   0.0 ( 0 )
 نشر من قبل Meijun Zhu
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The classical sharp Hardy-Littlewood-Sobolev inequality states that, for $1<p, t<infty$ and $0<lambda=n-alpha <n$ with $ 1/p +1 /t+ lambda /n=2$, there is a best constant $N(n,lambda,p)>0$, such that $$ |int_{mathbb{R}^n} int_{mathbb{R}^n} f(x)|x-y|^{-lambda} g(y) dx dy|le N(n,lambda,p)||f||_{L^p(mathbb{R}^n)}||g||_{L^t(mathbb{R}^n)} $$ holds for all $fin L^p(mathbb{R}^n), gin L^t(mathbb{R}^n).$ The sharp form is due to Lieb, who proved the existence of the extremal functions to the inequality with sharp constant, and computed the best constant in the case of $p=t$ (or one of them is 2). Except that the case for $pin ((n-1)/n, n/alpha)$ (thus $alpha$ may be greater than $n$) was considered by Stein and Weiss in 1960, there is no other result for $alpha>n$. In this paper, we prove that the reversed Hardy-Littlewood-Sobolev inequality for $0<p, t<1$, $lambda<0$ holds for all nonnegative $fin L^p(mathbb{R}^n), gin L^t(mathbb{R}^n).$ For $p=t$, the existence of extremal functions is proved, all extremal functions are classified via the method of moving sphere, and the best constant is computed.



قيم البحث

اقرأ أيضاً

179 - Wei Dai , Yunyun Hu , Zhao Liu 2020
In this paper, we prove the following reversed Hardy-Littlewood-Sobolev inequality with extended kernel begin{equation*} int_{mathbb{R}_+^n}int_{partialmathbb{R}^n_+} frac{x_n^beta}{|x-y|^{n-alpha}}f(y)g(x) dydxgeq C_{n,alpha,beta,p}|f|_{L^{p}(partia lmathbb{R}_+^n)} |g|_{L^{q}(mathbb{R}_+^n)} end{equation*} for any nonnegative functions $fin L^{p}(partialmathbb{R}_+^n)$ and $gin L^{q}(mathbb{R}_+^n)$, where $ngeq2$, $p, qin (0,1)$, $alpha>n$, $0leqbeta<frac{alpha-n}{n-1}$, $p>frac{n-1}{alpha-1-(n-1)beta}$ such that $frac{n-1}{n}frac{1}{p}+frac{1}{q}-frac{alpha+beta-1}{n}=1$. We prove the existence of extremal functions for the above inequality. Moreover, in the conformal invariant case, we classify all the extremal functions and hence derive the best constant via a variant method of moving spheres, which can be carried out emph{without lifting the regularity of Lebesgue measurable solutions}. Finally, we derive the sufficient and necessary conditions for existence of positive solutions to the Euler-Lagrange equations by using Pohozaev identities. Our results are inspired by Hang, Wang and Yan cite{HWY}, Dou, Guo and Zhu cite{DGZ} for $alpha<n$ and $beta=1$, and Gluck cite{Gl} for $alpha<n$ and $betageq0$.
258 - Jingbo Dou , Meijun Zhu 2013
There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent $lambda=n-alpha$ (that is for the c ase of $alpha>n$). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequality on the upper half space (which is conformally equivalent to a ball). The existences of extremal functions are obtained; And for certain range of the exponent, we classify all extremal functions via the method of moving sphere.
133 - Jean Dolbeault 2018
This paper is devoted to a new family of reverse Hardy-Littlewood-Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and characterize the optimal functions. A striking o pen question is the possibility of concentration which is analyzed and related with nonlinear diffusion equations involving mean field drifts.
We prove reversed Hardy-Littlewood-Sobolev inequalities by carefully studying the natural associated free energies with direct methods of calculus of variations. Tightness is obtained by a dyadic argument, which quantifies the relative strength of th e entropy functional versus the interaction energy. The existence of optimizers is shown in the class of $prob$. With respect to their regularity, we study conditions for optimizers to be bounded functions. In a related model, we show the condensation phenomena, which suggests that optimizers are not in general regular.
In various analytical contexts, it is proved that a weak Sobolev inequality implies a doubling property for the underlying measure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا