ﻻ يوجد ملخص باللغة العربية
The 2D azimuth & rapidity structure of the two-particle correlations in relativistic A+A collisions is altered significantly by the presence of sharp inhomogeneities in superdense matter formed in such processes. The causality constraints enforce one to associate the long-range longitudinal correlations observed in a narrow angular interval, the so-called (soft) ridge, with peculiarities of the initial conditions of collision process. This studys objective is to analyze whether multiform initial tubular structures, undergoing the subsequent hydrodynamic evolution and gradual decoupling, can form the soft ridges. Motivated by the flux-tube scenarios, the initial energy density distribution contains the different numbers of high density tube-like boost-invariant inclusions that form a bumpy structure in the transverse plane. The influence of various structures of such initial conditions in the most central A+A events on the collective evolution of matter, resulting spectra, angular particle correlations and v_n-coefficients is studied in the framework of the HydroKinetic Model (HKM).
The two component Monte-Carlo Glauber model predicts a knee-like structure in the centrality dependence of elliptic flow $v_2$ in Uranium+Uranium collisions at $sqrt{s_{NN}}=193$ GeV. It also produces a strong anti-correlation between $v_2$ and $dN_{
We show that a Bjorken expanding strongly coupled $mathcal{N}=4$ Supersymmetric Yang-Mills plasma can violate the dominant and also the weak energy condition in its approach to hydrodynamics (even though the chosen initial data satisfy these constrai
A simple approach is proposed allowing actual calculations of the preequilibrium dynamics in ultrarelativistic heavy-ion collisions to be performed for a far-from-equilibrium initial state. The method is based on the phenomenological macroscopic equa
We present a Principal Component Analysis for a hydrodynamic simulation and compare with CMS experimental data. While the results are reasonable for anisotropic flow, for multiplicity fluctuations they are qualitatively different. We argue that this
We study effects of eccentricity fluctuations on the elliptic flow coefficient v_2 at mid-rapidity in both Au+Au and Cu+Cu collisions at sqrt{s_{NN}}=200 GeV by using a hybrid model that combines ideal hydrodynamics for space-time evolution of the qu