ﻻ يوجد ملخص باللغة العربية
We present the results of the search for a correlation between giant radio pulses (GRPs) at 1.4 GHz and hard X-rays at 15-75 keV from the Crab pulsar. We made simultaneous ground and satellite observations of the Crab pulsar over 12 hours in three occasions in April 2010, March and September 2011, and got a sample of 1.3*10^4 main-pulse phase GRPs. From these samples we have found statistically marginal enhancement (21.5%, 2.70 sigma) of hard X-ray flux within +/- 1.5 degree phase angle of the synchronous peak of main-pulse phase GRPs. This enhancement, if confirmed, implicates that GRPs may accompany plasma density increases in the pulsar magnetosphere.
We present the results of a joint observational campaign between the Green Bank radio telescope and the VERITAS gamma-ray telescope, which searched for a correlation between the emission of very-high-energy (VHE) gamma rays ($E_{gamma} >$ 150 GeV) an
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 -- 300 keV band and the Kashima NICT radio observ
Giant radio pulses (GRPs) are sporadic bursts emitted by some pulsars, lasting a few microseconds. GRPs are hundreds to thousands of times brighter than regular pulses from these sources. The only GRP-associated emission outside radio wavelengths is
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our
No apparent correlation was found between giant pulses (GPs) and X-ray photons from the Crab pulsar during 5.4 hours of simultaneous observations with the Green Bank Telescope at 1.5 GHz and Chandra X-Ray Observatory primarily in the energy range 1.5