ﻻ يوجد ملخص باللغة العربية
Recent observations have shown several supernova remnants (SNRs) have overionized plasmas, those where ions are stripped of more electrons than they would be if in equilibrium with the electron temperature. Rapid electron cooling is necessary to produce this situation, yet the physical origin of that cooling remains uncertain. To assess the cooling scenario responsible for overionization, in this paper, we identify and map the overionized plasma in the Galactic SNR W49B based on a 220 ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation. We performed a spatially-resolved spectroscopic analysis, measuring the electron temperature by modeling the continuum and comparing it to the temperature given by the flux ratio of the He-like and H-like lines of sulfur and of argon. Using these results, we find that W49B is overionized in the west, with a gradient of increasing overionization from east to west. As the ejecta expansion is impeded by molecular material in the east but not in the west, our overionization maps suggest the dominant cooling mechanism is adiabatic expansion of the hot plasma.
The physical origin of the overionized recombining plasmas (RPs) in supernova remnants (SNRs) has been attracting attention because its understanding provides new insight into SNR evolution. However, the process of the overionization, although it has
We report on the results of our detailed analyses on the peculiar recombining plasma of the supernova remnant (SNR) G359.1$-$0.5, and the interacting CO clouds. Combining {it Chandra} and {it Suzaku} data, we estimated the ionization state of the pla
X-ray observations of supernova remnants (SNRs) in the last decade have shown that the presence of recombining plasmas is somewhat common in a certain type of object. The SNR W49B is the youngest, hottest, and most highly ionized among such objects a
We report on NuSTAR observations of the mixed morphology supernova remnant (SNR) W49B, focusing on its nonthermal emission. Whereas radio observations as well as recent gamma-ray observations evidenced particle acceleration in this SNR, nonthermal X-
The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). $gamma$-ray o