ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of unbound neutron-rich $^{9}$He studied using single-neutron transfer

136   0   0.0 ( 0 )
 نشر من قبل Julien Gibelin
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.



قيم البحث

اقرأ أيضاً

Search for the neutron-rich hypernucleus 9LHe is reported by the FINUDA experiment at DAFNE, INFN-LNF, studying (pi+, pi-) pairs in coincidence from the K-stop + 9Be --> 9LHe + pi+ production reaction followed by 9LHe --> 9Li + pi- weak decay. An upp er limit of the production rate of 9LHe undergoing this two-body pi- decay is determined to be (2.3 +/- 1.9) 10-6/K-stop at 90% confidence level.
The structure of the unbound nuclei 9He, 10Li and 13Be has been explored using breakup and proton-knockout from intermediate energy 11Be and 14,15B beams. In the case of both N=7 isotones, virtual s-wave strength is observed near threshold together w ith a higher-lying resonance. A very narrow structure at threshold in the 12Be+n relative energy spectrum is demonstrated to arise from the decay of the 14Be*(2+), discounting earlier reports of a strong virtual s-wave state in 13Be.
128 - W. N. Catford 2009
A general experimental technique for high resolution studies of nucleon transfer reactions using radioactive beams is briefly described, together with the first new physics results that have been obtained with the new TIARA array. These first results from TIARA are for the reaction 24Ne(d,p)25Ne, studied in inverse kinematics with a pure radioactive beam of 100,000 pps from the SPIRAL facility at GANIL. The reaction probes the energies of neutron orbitals relevant to very neutron rich nuclei in this mass region and the results highlight the emergence of the N=16 magic number for neutrons and the associated disappearance of the N=20 neutron magic number for the very neutron rich neon isotopes.
160 - G. Christian , N. Frank , S. Ash 2012
The ground state of $^{28}$F has been observed as an unbound resonance $2underline{2}0$ keV above the ground state of $^{27}$F. Comparison of this result with USDA/USDB shell model predictions leads to the conclusion that the $^{28}$F ground state is primarily dominated by $sd$-shell configurations. Here we present a detailed report on the experiment in which the ground state resonance of $^{28}$F was first observed. Additionally, we report the first observation of a neutron-unbound excited state in $^{27}$F at an excitation energy of $25underline{0}0 (2underline{2}0)$ keV.
Neutron-unbound resonant states of 11Be were populated in neutron knock-out reactions from 12Be and identified by 10Be-n coincidence measurements. A resonance in the decay-energy spectrum at 80(2) keV was attributed to a highly excited unbound state in 11Be at 3.949(2) MeV decaying to the 2+ excited state in 10Be. A knockout cross section of 15(3) mb was inferred for this 3.949(2) MeV state suggesting a spectroscopic factor near unity for this 0p3/2- level, consistent with the detailed shell model calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا