ﻻ يوجد ملخص باللغة العربية
Quantum speed limit (QSL) under noise has drawn considerable attention in real quantum computational processes and quantum communication. Though non-Markovian noise is proven to be able to accelerate quantum evolution for a damped Jaynes-Cummings model, in this work we show that non-Markovianity may even slow down the quantum evolution of an experimentally controllable photon system. As an important application, QSL time of a photon can be well controlled by regulating the relevant environment parameter properly, which is close to reach the currently available photonic experimental technology.
Quantum speed limit (QSL) for open quantum systems in the non-Markovian regime is analyzed. We provide the lower bound for the time required to transform an initial state to a final state in terms of thermodynamic quantities such as the energy fluctu
We investigate the dynamics of quantum correlations (QC) under the effects of reservoir memory, as a resource for quantum information and computation tasks. Quantum correlations of two-qubit systems are used for implementing quantum teleportation suc
We investigate the roles of different environmental models on quantum correlation dynamics of two-qubit composite system interacting with two independent environments. The most common environmental models (the single-Lorentzian model, the squared-Lor
Machine learning methods have proved to be useful for the recognition of patterns in statistical data. The measurement outcomes are intrinsically random in quantum physics, however, they do have a pattern when the measurements are performed successiv
We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian process. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical pr