ﻻ يوجد ملخص باللغة العربية
Stabilization of the Si(553) surface by Au adsorption results in two different atomically defined chain types, one of Au atoms and one of Si. At low temperature these chains develop two- and threefold periodicity, respectively, previously attributed to Peierls instabilities. Here we report evidence from scanning tunneling microscopy that rules out this interpretation. The x3 superstructure of the Si chains vanishes for low tunneling bias, i.e., close the Fermi level. In addition, the Au chains remain metallic despite their period doubling. Both observations are inconsistent with a Peierls mechanism. On the contrary, our results are in excellent, detailed agreement with the Si(553)-Au ground state predicted by density-functional theory, where the x2 periodicity of the Au chain is an inherent structural feature and every third Si atom is spin-polarized.
When gold is deposited on Si(553), the surface self-assembles to form a periodic array of steps with nearly perfect structural order. In scanning tunneling microscopy these steps resemble quasi-one-dimensional atomic chains. At temperatures below ~50
We consider a chain of atoms that are bound together by a harmonic force. Spin-1/2 electrons that move between neighboring chain sites (Huckel model) induce a lattice dimerization at half band filling (Peierls effect). We supplement the Huckel model
Harnessing power-law interactions ($1/r^alpha$) in a large variety of physical systems are increasing. We study the dynamics of chiral spin chains as a possible multi-directional quantum channel. This arises from the nonlinear character of the disper
Using state of the art Hybrid-Monte-Carlo (HMC) simulations we carry out an unbiased study of the competition between spin-density wave (SDW) and charge-density wave (CDW) order in suspended graphene. We determine that the realistic inter-electron po
Recent photoemission experiments on the Si(553)-Au reconstruction show a one-dimensional band with a peculiar ~1/4 filling. This band could provide an opportunity for observing large spin-charge separation if electron-electron interactions could be i