ﻻ يوجد ملخص باللغة العربية
The mass assembly of a whole population of sub-Milky Way galaxies is studied by means of hydrodynamical simulations within the $Lambda$-CDM cosmology. Our results show that while dark halos assemble hierarchically, in stellar mass this trend is inverted in the sense that the smaller the galaxy, the later is its stellar mass assembly on average. Our star formation and supernovae feedback implementation in a multi-phase interstellar medium seems to play a key role on this process. However, the obtained downsizing trend is not yet as strong as observations show.
The homogeneous, isotropic, and flat $Lambda$CDM universe favored by observations of the cosmic microwave background can be described using only Euclidean geometry, locally correct Newtonian mechanics, and the basic postulates of special and general
We investigate the observational viability of a class of cosmological models in which the vacuum energy density decays linearly with the Hubble parameter, resulting in a production of cold dark matter particles at late times. Similarly to the flat La
We use the Evolution and Assembly of GaLaxies and their Environments ( EAGLE ) suite of hydrodynamical cosmological simulations to measure offsets between the centres of stellar and dark matter components of galaxies. We find that the vast majority (
New statistical properties of dark matter halos in Lagrangian space are presented. Tracing back the dark matter particles constituting bound halos resolved in a series of N-body simulations, we measure quantitatively the correlations of the proto-hal
We present constraints on extensions to the flat $Lambda$CDM cosmological model by varying the spatial curvature $Omega_K$, the sum of the neutrino masses $sum m_ u$, the dark energy equation of state parameter $w$, and the Hu-Sawicki $f(R)$ gravity