ﻻ يوجد ملخص باللغة العربية
Stochastic models such as Continuous-Time Markov Chains (CTMC) and Stochastic Hybrid Automata (SHA) are powerful formalisms to model and to reason about the dynamics of biological systems, due to their ability to capture the stochasticity inherent in biological processes. A classical question in formal modelling with clear relevance to biological modelling is the model checking problem. i.e. calculate the probability that a behaviour, expressed for instance in terms of a certain temporal logic formula, may occur in a given stochastic process. However, one may not only be interested in the notion of satisfiability, but also in the capacity of a system to mantain a particular emergent behaviour unaffected by the perturbations, caused e.g. from extrinsic noise, or by possible small changes in the model parameters. To address this issue, researchers from the verification community have recently proposed several notions of robustness for temporal logic providing suitable definitions of distance between a trajectory of a (deterministic) dynamical system and the boundaries of the set of trajectories satisfying the property of interest. The contributions of this paper are twofold. First, we extend the notion of robustness to stochastic systems, showing that this naturally leads to a distribution of robustness scores. By discussing two examples, we show how to approximate the distribution of the robustness score and its key indicators: the average robustness and the conditional average robustness. Secondly, we show how to combine these indicators with the satisfaction probability to address the system design problem, where the goal is to optimize some control parameters of a stochastic model in order to best maximize robustness of the desired specifications.
Recent studies show that deep neural networks (DNN) are vulnerable to adversarial examples, which aim to mislead DNNs by adding perturbations with small magnitude. To defend against such attacks, both empirical and theoretical defense approaches have
From biological systems to cyber-physical systems, monitoring the behavior of such dynamical systems often requires to reason about complex spatio-temporal properties of physical and/or computational entities that are dynamically interconnected and a
Following the success in advancing natural language processing and understanding, transformers are expected to bring revolutionary changes to computer vision. This work provides the first and comprehensive study on the robustness of vision transforme
We present MoonLight, a tool for monitoring temporal and spatio-temporal properties of mobile and spatially distributed cyber-physical systems (CPS). In the proposed framework, space is represented as a weighted graph, describing the topological conf
This paper proposes a strategy to assess the robustness of different machine learning models that involve natural language processing (NLP). The overall approach relies upon a Search and Semantically Replace strategy that consists of two steps: (1) S