ﻻ يوجد ملخص باللغة العربية
Using the fact that the nonintegrable phase factor can reformulate the gauge theory in terms of path dependent vector potentials, the quantization condition for the nonintegrable phase is investigated. It is shown that the path-dependent formalism can provide compact description of the flux quantization and the charge quantization at the existence of a magnetic monopole. Moreover, the path-dependent formalism gives suggestions for searching of the quantized flux in different configurations and for other possible reasons of the charge quantization. As an example, the developed formalism is employed for a (1+1) dimensional world, showing the relationship between the fundamental unit of the charge and the fine structure constant for this world.
We present a canonical quantization of macroscopic electrodynamics. The results apply to inhomogeneous media with a broad class of linear magneto-electric responses which are consistent with the Kramers-Kronig and Onsager relations. Through its abili
The evolution pattern of exceptional points is studied in a non-integrable limit of the complex-extended 3-level Richardson-Gaudin model. The appearance of a pseudo-diabolic point from the fusion of two exceptional points is demonstrated in the anti-
In a ring of s-wave superconducting material the magnetic flux is quantized in units of $Phi_0 = frac{h}{2e}$. It is well known from the theory of Josephson junctions that if the ring is interrupted with a piece of d-wave material, then the flux is q
Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy $frac{1}{2}hbar omega$ in each mode, i.e., the zero-point Planck spectrum. While this classical theory
We analytically derive the upper bound on the overall efficiency of single-photon generation based on cavity quantum electrodynamics (QED), where cavity internal loss is treated explicitly. The internal loss leads to a tradeoff relation between the i