ﻻ يوجد ملخص باللغة العربية
We propose and study a model of a quantum memory that features self-correcting properties and a lifetime growing arbitrarily with system size at non-zero temperature. This is achieved by locally coupling a 2D L x L toric code to a 3D bath of bosons hopping on a cubic lattice. When the stabilizer operators of the toric code are coupled to the displacement operator of the bosons, we solve the model exactly via a polaron transformation and show that the energy penalty to create anyons grows linearly with L. When the stabilizer operators of the toric code are coupled to the bosonic density operator, we use perturbation theory to show that the energy penalty for anyons scales with ln(L). For a given error model, these energy penalties lead to a lifetime of the stored quantum information growing respectively exponentially and polynomially with L. Furthermore, we show how to choose an appropriate coupling scheme in order to hinder the hopping of anyons (and not only their creation) with energy barriers that are of the same order as the anyon creation gaps. We argue that a toric code coupled to a 3D Heisenberg ferromagnet realizes our model in its low-energy sector. Finally, we discuss the delicate issue of the stability of topological order in the presence of perturbations. While we do not derive a rigorous proof of topological order, we present heuristic arguments suggesting that topological order remains intact when perturbative operators acting on the toric code spins are coupled to the bosonic environment.
We consider a surface code suffering decoherence due to coupling to a bath of bosonic modes at finite temperature and study the time available before the unavoidable breakdown of error correction occurs as a function of coupling and bath parameters.
Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liqui
We derive a Lindblad master equation that approximates the dynamics of a Lipkin-Meshkov-Glick (LMG) model weakly coupled to a bosonic bath. By studying the time evolution of operators under the adjoint master equation we prove that, for large system
We discuss a hybrid quantum system where a dielectric membrane situated inside an optical cavity is coupled to a distant atomic ensemble trapped in an optical lattice. The coupling is mediated by the exchange of sideband photons of the lattice laser,
We present a novel scheme for performing a conditional phase gate between two spin qubits in adjacent semiconductor quantum dots through delocalized single exciton states, formed through the inter-dot Foerster interaction. We consider two resonant qu