ﻻ يوجد ملخص باللغة العربية
Let $eta: C_{f,N}to mathbb{P}^1$ be a cyclic cover of $mathbb{P}^1$ of degree $N$ which is totally and tamely ramified for all the ramification points. We determine the group of fixed points of the cyclic group $mathbf{mu}_Ncong mathbb{Z}/Nmathbb{Z}$ acting on the Jacobian $J_N:=Jac(C_{f,N})$. For each $ell$ distinct from the characteristic of the base field, the Tate module $T_ell J_N$ is shown to be a free module over the ring $mathbb{Z}_ell[T]/(sum_{i=0}^{N-1}T^i)$. We also calculate the degree of the induced polarization on the new part $J_N^{new}$ of the Jacobian.
Let $K$ be a field of prime characteristic $p$, $n>4 $ an integer, $f(x)$ an irreducible polynomial over $K$ of degree $n$, whose Galois group is either the full symmetric group $S_n$ or the alternating group $A_n$. Let $l$ be an odd prime different
Let K be a field of characteristic zero, f(x) be a polynomial with coefficients in K and without multiple roots. We consider the superelliptic curve C_{f,q} defined by y^q=f(x), where q=p^r is a power of a prime p. We determine the Hodge group of the simple factors of the Jacobian of C_{f,q}.
In this paper we study the Coleman-Oort conjecture for superelliptic curves, i.e., curves defined by affine equations $y^n=F(x)$ with $F$ a separable polynomial. We prove that up to isomorphism there are at most finitely many superelliptic curves of
We show that Connes B-operator on a cyclic differential graded k-module M is a model for the canonical circle action on the geometric realization of M. This implies that the negative cyclic homology and the periodic cyclic homology of a differential
We introduce and study higher order Jacobian ideals, higher order and mixed Hessians, higher order polar maps, and higher order Milnor algebras associated to a reduced projective hypersurface. We relate these higher order objects to some standard gra