ﻻ يوجد ملخص باللغة العربية
Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary quantum properties for a solid-state system. It might be possible to merge the two approaches, making single-crystal superconducting devices out of a semiconductor by utilizing the latest atomistic fabrication techniques. Here we propose superconducting devices made from precision hole-doped regions within a silicon (or germanium) single crystal. We analyze the properties of this superconducting semiconductor and show that practical superconducting wires, Josephson tunnel junctions or weak links, superconducting quantum interference devices (SQUIDs), and qubits are feasible. This work motivates the pursuit of bottom-up superconductivity for improved or fundamentally different technology and physics.
Recent improvements in materials growth and fabrication techniques may finally allow for superconducting semiconductors to realize their potential. Here we build on a recent proposal to construct superconducting devices such as wires, Josephson junct
We theoretically study the emission statistics of a weakly nonlinear photonic dimer during coherent oscillations. We show that the phase and population dynamics allow to periodically meet an optimal intensity squeezing condition resulting in a strong
We consider a combined nanomechanical-supercondcuting device that allows the Cooper pair tunneling to interfere with the mechanical motion of the middle superconducting island. Coupling of mechanical oscillations of a superconducting island between t
We measured the Josephson radiation emitted by an InSb semiconductor nanowire junction utilizing photon assisted quasiparticle tunneling in an AC-coupled superconducting tunnel junction. We quantify the action of the local microwave environment by ev
Injection locking can stabilize a source of radiation, leading to an efficient suppression of noise-induced spectral broadening and therefore, to a narrow spectrum. The technique is well established in laser physics, where a phenomenological descript