ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable add-drop filter using an active whispering gallery mode microcavity

156   0   0.0 ( 0 )
 نشر من قبل Sahin Kaya Ozdemir Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An add-drop filter (ADF) fabricated using a whispering gallery mode resonator has different crosstalks for add and drop functions due to non-zero intrinsic losses of the resonator. Here, we show that introducing gain medium in the resonator and optically pumping it below the lasing threshold not only allows loss compensation to achieve similar and lower crosstalks but also tunability in bandwidth and add-drop efficiency. For an active ADF fabricated using an erbium-ytterbium co-doped microsphere, we achieved 24-fold enhancement in the intrinsic quality factor, 3.5-fold increase in drop efficiency, bandwidth tunability of 35 MHz and a crosstalk of only 2%.



قيم البحث

اقرأ أيضاً

We demonstrate a thermal infrared (IR) detector based on an ultra-high-quality-factor (Q) whispering-gallery-mode (WGM) microtoroidal silica resonator, and investigate its performance to detect IR radiation at 10 micron wavelength. The bandwidth and the sensitivity of the detector are dependent on the power of a probe laser and the detuning between the probe laser and the resonance frequency of the resonator. The microtoroid IR sensor achieved a noise-equivalent-power (NEP) of 7.46 nW, corresponding to IR intensity of 0.095 mW/cm^2
93 - Hang Li , Rui Ge , Yuchen Peng 2020
Topological photonics have led to the robust optical behavior of the device, which has solved the problem of the influence of manufacturing defects and perturbations on the device performance. Meanwhile, temporal coupled-mode theory (t-CMT) has been developed and applied widely. However, the t-CMT of cascaded coupling cavities (CCC) system and its corresponding high-order filter has yet to be established. Here the t-CMT of CCC system is established based on the existing t-CMT. By combining the CCC with the topological waveguides, a versatile design scheme of the high-order nonreciprocal add-drop filter (HONAF) is proposed. The relationship between coupling effect of cavities and transmission and filtering performance of HONAF is analyzed quantitatively, then a method to improve the transmission efficiency and quality factor of the filter is given. Based on the combination of gyromagnetic photonic crystals and decagonal Penrose-type photonic quasicrystals, a HONAF is proposed. The transmission and filtering performance of the HONAF are numerically analyzed, which verifies the consistency between the theoretical prediction and the numerical simulation. The t-CMT of CCC system established can be widely used in the coupled resonator optical waveguides and their related systems. The designed HONAF can also be applied and compatible to microwave communication system.
We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.
Recently optical whispering-gallery-mode resonators (WGMRs) have emerged as promising platforms to achieve label-free detection of nanoscale objects and to reach single molecule sensitivity. The ultimate detection performance of WGMRs are limited by energy dissipation in the material they are fabricated from. Up to date, to improve detection limit, either rare-earth ions are doped into the WGMR to compensate losses or plasmonic resonances are exploited for their superior field confinement. Here, we demonstrate, for the first time, enhanced detection of single-nanoparticle induced mode-splitting in a silica WGMR via Raman-gain assisted loss-compensation and WGM Raman lasing. Notably, we detected and counted individual dielectric nanoparticles down to a record low radius of 10 nm by monitoring a beatnote signal generated when split Raman lasing lines are heterodyne-mixed at a photodetector. This dopant-free scheme retains the inherited biocompatibility of silica, and could find widespread use for sensing in biological media. It also opens the possibility of using intrinsic Raman or parametric gain in other systems, where dissipation hinders the progress of the field and limits applications.
Whispering gallery mode (WGM) resonators are compelling optical devices, however they are nearly unexplored in the terahertz (THz) domain. In this letter, we report on THz WGMs in quartz glass bubble resonators with sub-wavelength wall thickness. An unprecedented study of both the amplitude and phase of THz WGMs is presented. The coherent THz frequency domain measurements are in excellent agreement with a simple analytical model and results from numerical simulations. A high finesse of 9 and a quality (Q) factor exceeding 440 at 0.47 THz are observed. Due to the large evanescent field the high Q-factor THz WGM bubble resonators can be used as a compact, highly sensitive sensor in the intriguing THz frequency range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا