ﻻ يوجد ملخص باللغة العربية
We study a new variant of consensus problems, termed `local average consensus, in networks of agents. We consider the task of using sensor networks to perform distributed measurement of a parameter which has both spatial (in this paper 1D) and temporal variations. Our idea is to maintain potentially useful local information regarding spatial variation, as contrasted with reaching a single, global consensus, as well as to mitigate the effect of measurement errors. We employ two schemes for computation of local average consensus: exponential weighting and uniform finite window. In both schemes, we design local average consensus algorithms to address first the case where the measured parameter has spatial variation but is constant in time, and then the case where the measured parameter has both spatial and temporal variations. Our designed algorithms are distributed, in that information is exchanged only among neighbors. Moreover, we analyze both spatial and temporal frequency responses and noise propagation associated with the algorithms. The tradeoffs of using local consensus, as compared to standard global consensus, include higher memory requirement and degraded noise performance. Arbitrary updating weights and random spacing between sensors are analyzed in the proposed algorithms.
We have recently proposed a surplus-based algorithm which solves the multi-agent average consensus problem on general strongly connected and static digraphs. The essence of that algorithm is to employ an additional variable to keep track of the state
We consider the problem of distributed average consensus in a sensor network where sensors exchange quantized information with their neighbors. We propose a novel quantization scheme that exploits the increasing correlation between the values exchang
This paper investigates the problem of distributed network-wide averaging and proposes a new greedy gossip algorithm. Instead of finding the optimal path of each node in a greedy manner, the proposed approach utilises a suboptimal communication path
We address the optimal transmit power allocation problem (from the sensor nodes (SNs) to the fusion center (FC)) for the decentralized detection of an unknown deterministic spatially uncorrelated signal which is being observed by a distributed wirele
In this paper, we consider the problem of optimally coordinating the response of a group of distributed energy resources (DERs) in distribution systems by solving the so-called optimal power flow (OPF) problem. The OPF problem is concerned with deter