ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of M31. III: Candidate Beat Cepheids from PS1 PAndromeda Data and Their Implication on Metallicity Gradient

142   0   0.0 ( 0 )
 نشر من قبل Chien-Hsiu Lee Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a sample of M31 beat Cepheids from the Pan-STARRS 1 PAndromeda campaign. By analyzing three years of PAndromeda data, we identify seventeen beat Cepheids, spreading from a galactocentric distance of 10 to 16 kpc. Since the relation between fundamental mode period and the ratio of fundamental to the first overtone period puts a tight constraint on metallicity we are able to derive the metallicity at the position of the beat Cepheids using the relations from the model of Buchler (2008). Our metallicity estimates show subsolar values within 15 kpc, similar to the metallicities from HII regions (Zurita & Bresolin 2012). We then use the metallicity estimates to calculate the metallicity gradient of the M31 disk, which we find to be closer to the metallicity gradient derived from planetary nebulae (Kwitter et al. 2012) than the metallicity gradient from HII regions (Zurita & Bresolin 2012).



قيم البحث

اقرأ أيضاً

We present the largest Cepheid sample in M31 based on the complete Pan-STARRS1 survey of Andromeda (PAndromeda) in the $r_{mathrm{P1}}$ , $i_{mathrm{P1}}$ and $g_{mathrm{P1}}$ bands. We find 2686 Cepheids with 1662 fundamental mode Cepheids, 307 firs t-overtone Cepheids, 278 type II Cepheids and 439 Cepheids with undetermined Cepheid type. Using the method developed by Kodric et al. (2013) we identify Cepheids by using a three dimensional parameter space of Fourier parameters of the Cepheid light curves combined with a color cut and other selection criteria. This is an unbiased approach to identify Cepheids and results in a homogeneous Cepheid sample. The Period-Luminosity relations obtained for our sample have smaller dispersions than in our previous work. We find a broken slope that we previously observed with HST data in Kodric et al. (2015), albeit with a lower significance.
566 - C.-H. Lee , S. Seitz , M. Kodric 2014
We perform a study on the optical and infrared photometric properties of known luminous blue variables (LBVs) in M31 using the sample of LBV candidates from the Local Group Galaxy Survey (Massey et al. 2007). We find that M31 LBV candidates show phot ometric variability ranging from 0.375 to 1.576 magnitudes in rP1 during a three year time-span observed by the Pan-STARRS 1 Andromeda survey (PAndromeda). Their near-infrared colors also follow the distribution of Galactic LBVs as shown by Oksala et al. (2013). We use these features as selection criteria to search for unknown LBV candidates in M31. We thus devise a method to search for candidate LBVs using both optical color from the Local Group Galaxy Survey and infrared color from Two Micron All Sky Survey, as well as photometric variations observed by PAndromeda. We find four sources exhibiting common properties of known LBVs. These sources also exhibit UV emission as seen from GALEX, which is one of the previously adopted method to search for LBV candidates. The locations of the LBVs are well aligned withM31 spiral arms as seen in the UV light, suggesting they are evolved stars at young age given their high-mass nature. We compare these candidates with the latest Geneva evolutionary tracks, which show that our new M31 LBV candidates are massive evolved stars with an age of 10 to 100 million years.
The goal of this work is to conduct a photometric study of eclipsing binaries in M31. We apply a modified box-fitting algorithm to search for eclipsing binary candidates and determine their period. We classify these candidates into detached, semi-det ached, and contact systems using the Fourier decomposition method. We cross-match the position of our detached candidates with the photometry from Local Group Survey (Massey et al. 2006) and select 13 candidates brighter than 20.5 magnitude in V. The relative physical parameters of these detached candidates are further characterized with Detached Eclipsing Binary Light curve fitter (DEBiL) by Devor (2005). We will followup the detached eclipsing binaries spectroscopically and determine the distance to M31.
We present our analysis of a large sample (over 150k) of candidate Galactic RR Lyrae (RRL) stars for which we derived high quality photometry at UV, optical and infrared wavelengths, using data from publicly available surveys. For a sub-sample of the se stars (~2,400 fundamental mode field RRLs) we have measured their individual metallicity using the Delta S method, resulting in the largest and most homogeneous spectroscopic data set collected for RRLs. We use this sample to study the metallicity distribution in the Galactic Halo, including the long-standing problem of the Oosterhoff dichotomy among Galactic globular clusters. We also analyze the dependence of their pulsation properties, and in particular the shape of their infrared light curves, from their [Fe/H] abundance.
Radial migration is an important process in the evolution of the Galactic disk. The metallicity gradient of open clusters and its outliers provide an effective way to probe for this process. In this work, we compile metallicity, age, and kinematic pa rameters for 225 open clusters and carry out a quantitative analysis of radial migration via the calculated migration distances. Based on clusters with age $< 0.5$ Gyr, we obtain the present-day metallicity gradient of $-0.074 pm 0.007$ dex/kpc. Along this gradient distributes three sequences, and clusters in the upper, the middle, and the lower groups are found to be old outward-migrators, in-situ clusters, and inward-migrators, respectively. The migration distance increases with age, but its most effective time is probably less than 3 Gyr. The metallicity gradient breaks out at $R_g$ (guiding center radius) $sim11.5$ kpc, which is caused by the lack of young open clusters in the outer disk and the presence of old outward-migrators in the upper sequence. It shows that this boundary is related to the different effects of radial migration between the inner and outer disks. We also found many special open clusters in and near the outer disk of $R > 11$ kpc and a steeper metallicity gradient from the inner disk of $R_g < 7$ kpc, which tells a complicated evolution history of the Galactic disk by different effects of stellar radial migration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا