ترغب بنشر مسار تعليمي؟ اضغط هنا

A near-infrared census of the multi-component stellar structure of early-type dwarf galaxies in the Virgo cluster

114   0   0.0 ( 0 )
 نشر من قبل Joachim Janz
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fraction of star-forming to quiescent dwarf galaxies varies from almost infinity in the field to zero in the centers of rich galaxy clusters. What is causing this pronounced morphology-density relation? What do quiescent dwarf galaxies look like when studied in detail, and what conclusions can be drawn about their formation mechanism? Here we study a nearly magnitude-complete sample (-19 < M_r < -16 mag) of 121 Virgo cluster early types with deep near-infrared images from the SMAKCED project. We fit two-dimensional models with optional inner and outer components, as well as bar and lens components (in ~15% of the galaxies), to the galaxy images. While a single Sersic function may approximate the overall galaxy structure, it does not entirely capture the light distribution of two-thirds of our galaxies, for which multi-component models provide a better fit. This fraction of complex galaxies shows a strong dependence on luminosity, being larger for brighter objects. We analyze the global and component-specific photometric scaling relations of early-type dwarf galaxies and discuss similarities with bright early and late types. The dwarfs global galaxy parameters show scaling relations that are similar to those of bright disk galaxies. The inner components are mostly fitted with Sersic n values close to 1. At a given magnitude they are systematically larger than the bulges of spirals, suggesting that they are not ordinary bulges. We argue that the multi-component structures in early-type dwarfs are mostly a phenomenon inherent to the disks, and may indeed stem from environmental processing.



قيم البحث

اقرأ أيضاً

[Abridged] Using VLT/FORS2 spectroscopy, we have studied the properties of the central stellar populations of a sample of 38 nucleated early-type dwarf (dE) galaxies in the Virgo Cluster. We find that these galaxies do not exhibit the same average st ellar population characteristics for different morphological subclasses. The nucleated galaxies without discs are older and more metal poor than the dEs with discs . The alpha-element abundance ratio appears consistent with the solar value for both morphological types. Besides a well-defined relation of metallicity and luminosity, we also find a clear anti-correlation between age and luminosity. More specifically, there appears to be a bimodality: brighter galaxies, including the discy ones, exhibit significantly younger ages than fainter dEs. Therefore, it appears less likely that fainter and brighter dEs have experienced the same evolutionary history, as the well-established trend of decreasing average stellar age when going from the most luminous ellipticals towards low-luminosity Es and bright dEs is broken here. The older and more metal-poor dEs could have had an early termination of star formation activity, possibly being primordial galaxies in the sense that they have formed along with the protocluster or experienced very early infall. By contrast, the younger and relatively metal-rich brighter dEs, most of which have discs, might have undergone structural transformation of infalling disc galaxies.
268 - E. Toloba 2010
We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy population inhabiting clusters. We confirm that dEs are not dark matter dominated galaxies, at least up to the half-light radius. We also find that the observed galaxies in the outer parts of the cluster are mostly rotationally supported systems with disky morphological shapes. Rotationally supported dEs have rotation curves similar to those of star forming galaxies of similar luminosity and follow the Tully-Fisher relation. This is expected if dE galaxies are the descendant of low luminosity star forming systems which recently entered the cluster environment and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming into quiescent systems, but conserving their angular momentum.
We present the results of a 8.4 GHz Very Large Array radio survey of early-type galaxies extracted from the ACS Virgo Cluster Survey. The aim of this survey is to investigate the origin of radio emission in early-type galaxies and its link with the h ost properties in an unexplored territory toward the lowest levels of both radio and optical luminosities. Radio images, available for all 63 galaxies with BT < 14.4, show the presence of a compact radio source in 12 objects, with fluxes spanning from 0.13 to 2700 mJy. The remaining 51 galaxies, undetected at a flux limit of ~0.1 mJy, have radio luminosities L < 4 10E18 W/Hz . The fraction of radio-detected galaxies are a strong function of stellar mass, in agreement with previous results: none of the 30 galaxies with stellar mass M(star) < 1.7 10E10 M(sun) is detected, while 8 of the 11 most massive galaxies have radio cores. There appears to be no simple relation between the presence of a stellar nucleus and radio emission. A multiwavelength analysis of the active galactic nucleus (AGN) emission, combining radio and X-ray data, confirms the link between optical surface brightness profile and radio loudness in the sense that the bright core galaxies are associated with radio-loud AGNs, while non-core galaxies host radio-quiet AGNs. Not all radio-detected galaxies have a X-ray nuclear counter part (and vice-versa). A complete census of AGNs (and supermassive black holes, SMBHs) thus requires observations, at least, in both bands. Nonetheless, there are massive galaxies in the sample, expected to host a large SMBH (M(BH) ~ 10E8 M(sun)), whose nuclear emission eludes detection despite their proximity and the depth and the spatial resolution of the available observations. Most likely this is due to an extremely low level of accretion onto the central SMBH.
We use dust scaling relations to investigate the hypothesis that Virgo cluster transition-type dwarfs are infalling star-forming field galaxies, which is argued based on their optical features (e.g. disks, spiral arms, bars) and kinematic properties similar to late-type galaxies. After their infall, environmental effects gradually transform them into early-type galaxies through the removal of their interstellar medium and quenching of all star formation activity. In this paper, we aim to verify whether this hypothesis holds using far-infrared diagnostics based on Herschel observations of the Virgo cluster taken as part of the Herschel Virgo Cluster Survey (HeViCS). We select transition-type objects in the nearest cluster, Virgo, based on spectral diagnostics indicative for their residual or ongoing star formation. We detect dust Md ~ 10^{5-6} Msun in 36% of the transition-type dwarfs located on the high end of the stellar mass distribution. This suggests that the dust reservoirs present in non-detections fall just below the Herschel detection limit (< 1.1x10^5 Msun). Dust scaling relations support the hypothesis of a transformation between infalling late-type galaxies to quiescent low-mass spheroids governed by environmental effects, with dust-to-stellar mass fractions for transition-type dwarfs in between values characteristic for late-type objects and the lower dust fractions observed in early-type galaxies. Several transition-type dwarfs demonstrate blue central cores, hinting at the radially outside-in removal of gas and quenching of star formation activity. The fact that dust is also confined to the inner regions suggests that metals are stripped in the outer regions along with the gas. In the scenario of most dust being stripped from the galaxy along with the gas, we argue that... (abridged)
202 - E. Toloba 2012
We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includ es rotation, to be able to compare the location of both rotationally and pressure supported dEs with those of early and late-type galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to lower velocity dispersions, being the link between Es and dwarf spheroidal galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly offset with respect to massive hot stellar systems, and re-casting the FP into the so-called kappa-space suggests that this offset is related to dEs having a total mass-to-light ratio higher than Es but still significantly lower than dSph galaxies. Given a stellar mass-to-light ratio based on the measured line indices of dEs, the FP offset allows us to infer that the dark matter fraction within the half light radii of dEs is on average >~ 42% (uncertainties of 17% in the K band and 20% in the V band), fully consistent with an independent estimate in an earlier paper in this series. We also find that dEs in the size-luminosity relation in the near-infrared, like in the optical, are offset from early-type galaxies, but seem to be consistent with late-type galaxies. We thus conclude that the scaling relations show that dEs are different from Es, and that they further strengthen our previous findings that dEs are closer to and likely formed from late-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا