ﻻ يوجد ملخص باللغة العربية
This paper considers the maximum generalized empirical likelihood (GEL) estimation and inference on parameters identified by high dimensional moment restrictions with weakly dependent data when the dimensions of the moment restrictions and the parameters diverge along with the sample size. The consistency with rates and the asymptotic normality of the GEL estimator are obtained by properly restricting the growth rates of the dimensions of the parameters and the moment restrictions, as well as the degree of data dependence. It is shown that even in the high dimensional time series setting, the GEL ratio can still behave like a chi-square random variable asymptotically. A consistent test for the over-identification is proposed. A penalized GEL method is also provided for estimation under sparsity setting.
In this paper we develop an online statistical inference approach for high-dimensional generalized linear models with streaming data for real-time estimation and inference. We propose an online debiased lasso (ODL) method to accommodate the special s
We propose a generalized version of the Dantzig selector. We show that it satisfies sparsity oracle inequalities in prediction and estimation. We consider then the particular case of high-dimensional linear regression model selection with the Huber l
Statistical methods with empirical likelihood (EL) are appealing and effective especially in conjunction with estimating equations through which useful data information can be adaptively and flexibly incorporated. It is also known in the literature t
This paper presents and analyzes an approach to cluster-based inference for dependent data. The primary setting considered here is with spatially indexed data in which the dependence structure of observed random variables is characterized by a known,
In the low-dimensional case, the generalized additive coefficient model (GACM) proposed by Xue and Yang [Statist. Sinica 16 (2006) 1423-1446] has been demonstrated to be a powerful tool for studying nonlinear interaction effects of variables. In this