In this paper we study the existence of maximizers for two families of interpolation inequalities, namely a generalized Gagliardo-Nirenberg inequality and a new inequality involving the Riesz energy. Two basic tools in our argument are a generalization of Liebs Translation Lemma and a Riesz energy version of the Brezis--Lieb lemma.
We consider the inequalities of Gagliardo-Nirenberg and Sobolev in R^d, formulated in terms of the Laplacian Delta and of the fractional powers D^n := (-Delta)^(n/2) with real n >= 0; we review known facts and present novel results in this area. Afte
r illustrating the equivalence between these two inequalities and the relations between the corresponding sharp constants and maximizers, we focus the attention on the L^2 case where, for all sufficiently regular f : R^d -> C, the norm || D^j f||_{L^r} is bounded in terms of || f ||_{L^2} and || D^n f ||_{L^2} for 1/r = 1/2 - (theta n - j)/d, and suitable values of j,n,theta (with j,n possibly noninteger). In the special cases theta = 1 and theta = j/n + d/2 n (i.e., r = + infinity), related to previous results of Lieb and Ilyin, the sharp constants and the maximizers can be found explicitly; we point out that the maximizers can be expressed in terms of hypergeometric, Fox and Meijer functions. For the general L^2 case, we present two kinds of upper bounds on the sharp constants: the first kind is suggested by the literature, the second one is an alternative proposal of ours, often more precise than the first one. We also derive two kinds of lower bounds. Combining all the available upper and lower bounds, the Gagliardo-Nirenberg and Sobolev sharp constants are confined to quite narrow intervals. Several examples are given.
With a view towards Riemannian or sub-Riemannian manifolds, RCD metric spaces and specially fractals, this paper makes a step further in the development of a theory of heat semigroup based $(1,p)$ Sobolev spaces in the general framework of Dirichlet
spaces. Under suitable assumptions that are verified in a variety of settings, the tools developed by D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste in the paper Sobolev inequalities in disguise allow us to obtain the whole family of Gagliardo-Nirenberg and Trudinger-Moser inequalities with optimal exponents. The latter depend not only on the Hausdorff and walk dimensions of the space but also on other invariants. In addition, we prove Morrey type inequalities and apply them to study the infimum of the exponents that ensure continuity of Sobolev functions. The results are illustrated for fractals using the Vicsek set, whereas several conjectures are made for nested fractals and the Sierpinski carpet.
We prove a Lieb-Thirring type inequality for potentials such that the associated Schr{o}dinger operator has a pure discrete spectrum made of an unbounded sequence of eigenvalues. This inequality is equivalent to a generalized Gagliardo-Nirenberg ineq
uality for systems. As a special case, we prove a logarithmic Sobolev inequality for infinite systems of mixed states. Optimal constants are determined and free energy estimates in connection with mixed states representations are also investigated.
In this paper we derive a variety of functional inequalities for general homogeneous invariant hypoelliptic differential operators on nilpotent Lie groups. The obtained inequalities include Hardy, Rellich, Hardy-Littllewood-Sobolev, Galiardo-Nirenber
g, Caffarelli-Kohn-Nirenberg and Trudinger-Moser inequalities. Some of these estimates have been known in the case of the sub-Laplacians, however, for more general hypoelliptic operators almost all of them appear to be new as no approaches for obtaining such estimates have been available. Moreover, we obtain sever
In this paper, we derive some new Gagliardo-Nirenberg type inequalities in Lorentz type spaces without restrictions on the second index of Lorentz norms, which generalize almost all known corresponding results. Our proof mainly relies on the Bernstei
n inequalities in Lorentz spaces, the embedding relation among various Lorentz type spaces, and Littlewood-Paley decomposition techniques. In addition, we establish several novel criteria in terms of the velocity or the gradient of the velocity in Lorentz spaces for energy conservation of the 3D Navier-Stokes equations. Particularly, we improve the classical Shinbrots condition for energy balance to allow both the space-time directions of the velocity to be in Lorentz spaces.
Jacopo Bellazzini
,Rupert L. Frank
,Nicola Visciglia
.
(2013)
.
"Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems"
.
Jacopo Bellazzini
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا