ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray photodesorption and proton destruction in protoplanetary disks: pyrimidine

201   0   0.0 ( 0 )
 نشر من قبل Edgar Mendoza
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The organic compounds HCN and C2H2, present in protoplanetary disks, may react to form precursor molecules of the nucleobases, such as the pyrimidine molecule, C4H4N2. Depending on the temperature in a given region of the disk, molecules are in the gas phase or condensed onto grain surfaces. The action of X-ray photons and MeV protons, emitted by the young central star, may lead to several physical and chemical processes in such prestellar environments. In this work we have experimentally investigated the ionization, dissociation and desorption processes of pyrimidine in the condensed and the gas phase stimulated by soft X-rays and protons, respectively. Pyrimidine was frozen at temperatures below 130 K and irradiated with X-rays at energies from 394 to 427 eV. In the gas phase experiment, a pyrimidine effusive jet at room temperature was bombarded with protons of 2.5 MeV. In both experiments, the time-of-flight mass-spectrometry technique was employed. Partial photodesorption ion yields as a function of the X-ray photon energy for ions such as C3H2+, HC3NH+ and C4H+ were determined. The experimental results were applied to conditions of the protoplanetary disk of TW Hydra star. Assuming three density profiles of molecular hydrogen, 1 x 10^6, 1 x 10^7 and 1 x 10^8 cm^-3, we determined HC3NH+ ion-production rates of the order of 10^-31 up to 10^-8 ions cm^-3 s^-1. Integrating over 1 x 10^6 yr, HC3NH^+ column density values, ranging from 3.47 x 10^9 to 1.29 x 10^13 cm^-2, were obtained as a function of the distance from central star. The optical depth is the main variable that affects ions production. In addition, computational simulations were used to determine the kinetic energies of ions desorbed from pyrimidine ice distributed between ~ 7 and 15 eV.



قيم البحث

اقرأ أيضاً

We study the PAH emission from protoplanetary disks. First, we discuss the dependence of the PAH band ratios on the hardness of the absorbed photons and the temperature of the stars. We show that the photon energy together with a varying degree of th e PAH hydrogenation accounts for most of the observed PAH band ratios without the need to change the ionization degree of the molecules. We present an accurate treatment of stochastic heated grains in a vectorized three dimensional Monte Carlo dust radiative transfer code. The program is verified against results using ray tracing techniques. Disk models are presented for T Tauri and Herbig Ae stars. Particular attention is given to the photo-dissociation of the molecules. We consider beside PAH destruction also the survival of the molecules by vertical mixing within the disk. By applying typical X-ray luminosities the model accounts for the low PAH detection probability observed in T Tauri and the high PAH detection statistics found in Herbig Ae disks. Spherical halos above the disks are considered. We show that halos reduce the observed PAH band-to-continuum ratios when observed at high inclination. Finally, mid-IR images of disks around Herbig Ae disks are presented. We show that they are easier to resolve when PAH emission dominate.
Water is the main constituent of interstellar ices, and it plays a key role in the evolution of many regions of the interstellar medium, from molecular clouds to planet-forming disks. In cold regions of the ISM, water is expected to be completely fro zen out onto the dust grains. Nonetheless, observations indicate the presence of cold water vapor, implying that non-thermal desorption mechanisms are at play. Photodesorption by UV photons has been proposed to explain these observations, with the support of extensive experimental and theoretical work on ice analogues. In contrast, photodesorption by X-rays, another viable mechanism, has been little studied. The potential of this process to desorb key molecules, such as water, intact rather than fragmented or ionised, remains unexplored. We experimentally investigated X-ray photodesorption from water ice, monitoring all desorbing species. We find that desorption of neutral water is efficient, while ion desorption is minor. We derive for the first time yields that can be implemented in astrochemical models. These results open up the possibility of taking into account the X-ray photodesorption process in the modelling of protoplanetary disks or X-ray dominated regions.
217 - G. Aresu , I. Kamp , R. Meijerink 2010
Context: T Tauri stars have X-ray luminosities ranging from L_X = 10^28-10^32 erg/s. These luminosities are similar to UV luminosities (L_UV 10^30-10^31 erg/s) and therefore X-rays are expected to affect the physics and chemistry of the upper layers of their surrounding protoplanetary disks. Aim: The effects and importance of X-rays on the chemical and hydrostatic structure of protoplanetary disks are investigated, species tracing X-ray irradiation (for L_X >= 10^29 erg/s) are identified and predictions for [OI], [CII] and [NII] fine structure line fluxes are provided. Methods: We have implemented X-ray physics and chemistry into the chemo-physical disk code ProDiMo. We include Coulomb heating and H2 ionization as heating processes and primary and secondary ionization due to X-rays in the chemistry. Results: X-rays heat up the gas causing it to expand in the optically thin surface layers. Neutral molecular species are not much affected in their abundance and spatial distribution, but charged species such as N+, OH+, H2O+ and H3O+ show enhanced abundances in the disk surface. Conclusions: Coulomb heating by X-rays changes the vertical structure of the disk, yielding temperatures of ~ 8000 K out to distances of 50 AU. The chemical structure is altered by the high electron abundance in the gas in the disk surface, causing an efficient ion-molecule chemistry. The products of this, OH+, H2O+ and H3O+, are of great interest for observations of low-mass young stellar objects with the Herschel Space Observatory. [OI] (at 63 and 145 mic) and [CII] (at 158 mic) fine structure emission are only affected for L_X > 10^30 erg/s.
133 - R. Meijerink , G. Aresu , I. Kamp 2012
Context. Planets are thought to eventually form from the mostly gaseous (~99% of the mass) disks around young stars. The density structure and chemical composition of protoplanetary disks are affected by the incident radiation field at optical, FUV, and X-ray wavelengths, as well as by the dust properties. Aims. The effect of FUV and X-rays on the disk structure and the gas chemical composition are investigated. This work forms the basis of a second paper, which discusses the impact on diagnostic lines of, e.g., C+, O, H2O, and Ne+ observed with facilities such as Spitzer and Herschel. Methods. A grid of 240 models is computed in which the X-ray and FUV luminosity, minimum grain size, dust size distribution, and surface density distribution are varied in a systematic way. The hydrostatic structure and the thermo-chemical structure are calculated using ProDiMo. Results. The abundance structure of neutral oxygen is stable to changes in the X-ray and FUV luminosity, and the emission lines will thus be useful tracers of the disk mass and temperature. The C+ abundance distribution is sensitive to both X-rays and FUV. The radial column density profile shows two peaks, one at the inner rim and a second one at a radius r=5-10 AU. Ne+ and other heavy elements have a very strong response to X-rays, and the column density in the inner disk increases by two orders of magnitude from the lowest (LX = 1e29 erg/s) to the highest considered X-ray flux (LX = 1e32 erg/s). FUV confines the Ne+ ionized region to areas closer to the star at low X-ray luminosities (LX = 1e29 erg/s). H2O abundances are enhanced by X-rays due to higher temperatures in the inner disk and higher ionization fractions in the outer disk. The line fluxes and profiles are affected by the effects on these species, thus providing diagnostic value in the study of FUV and X-ray irradiated disks around T Tauri stars. (abridged)
Most of the mass in protoplanetary disks is in the form of gas. The study of the gas and its diagnostics is of fundamental importance in order to achieve a detailed description of the thermal and chemical structure of the disk. The radiation from the central star (from optical to X-ray wavelengths) and viscous accretion are the main source of energy and dominates the disk physics and chemistry in its early stages. This is the environment in which the first phases of planet formation will proceed. We investigate how stellar and disk parameters impact the fine-structure cooling lines [NeII], [ArII], [OI], [CII] and H2O rotational lines in the disk. These lines are potentially powerful diagnostics of the disk structure and their modelling permits a thorough interpretation of the observations carried out with instrumental facilities such as Spitzer and Herschel. Following Aresu et al. (2011), we computed a grid of 240 disk models, in which the X-ray luminosity, UV-excess luminosity, minimum dust grain size, dust size distribution power law and surface density distribution power law, are systematically varied. We solve self-consistently for the disk vertical hydrostatic structure in every model and apply detailed line radiative transfer to calculate line fluxes and profiles for a series of well known mid- and far-infrared cooling lines. The [OI] 63 micron line flux increases with increasing FUV luminosity when Lx < 1e30 erg/s, and with increasing X-ray luminosity when LX > 1e30 erg/s. [CII] 157 micron is mainly driven by FUV luminosity via C+ production, X-rays affect the line flux to a lesser extent. [NeII] 12.8 micron correlates with X-rays; the line profile emitted from the disk atmosphere shows a double-peaked component, caused by emission in the static disk atmosphere, next to a high velocity double-peaked component, caused by emission in the very inner rim. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا