ﻻ يوجد ملخص باللغة العربية
A double quantum dot device, connected to two channels that only see each other through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. By using a two-impurity Anderson model, and parameter values obtained from experiment [S. Amasha {it et al.}, Phys. Rev. Lett. {bf 110}, 046604 (2013)], it is shown that, by applying a moderate magnetic field, and adjusting the gate potential of each quantum dot, opposing spin polarizations are created in each channel. Furthermore, through a well defined change in the gate potentials, the polarizations can be reversed. This polarization effect is clearly associated to a spin-orbital Kondo state having a Kondo peak that originates from spatially separated parts of the device. This fact opens the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.
We study the persistent current circulating along a mesoscopic ring with a dot side-coupled to it when threaded by a magnetic field. A cluster including the dot and its vicinity is diagonalized and embedded into the rest of the system. The result is
The spatial length of the Kondo screening is still a controversial issue related to Kondo physics. While renormalization group and Bethe Anzats solutions have provided detailed information about the thermodynamics of magnetic impurities, they are ins
We examine the low energy behavior of a double quantum dot in a regime where spin and pseudospin excitations are degenerate. The individual quantum dots are described by Anderson impurity models with an on-site interaction $U$ which are capacitively
Using a four-band Hamiltonian, we study the phase boundary of spin-polarized-current state (SPCS) of interacting electrons in bilayer graphene. The model of spin-polarized-current state has previously been shown to resolve a number of experimental pu
The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo