ترغب بنشر مسار تعليمي؟ اضغط هنا

The Herschel Stripe 82 Survey (HerS): Maps and Early Catalog

117   0   0.0 ( 0 )
 نشر من قبل Marco Viero P
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first set of maps and band-merged catalog from the Herschel Stripe 82 Survey (HerS). Observations at 250, 350, and 500 micron were taken with the Spectral and Photometric Imaging Receiver (SPIRE) instrument aboard the Herschel Space Observatory. HerS covers 79 deg$^2$ along the SDSS Stripe 82 to a depth of 13.0, 12.9, and 14.8 mJy beam$^{-1}$ (including confusion) at 250, 350, and 500 micron, respectively. HerS was designed to measure correlations with external tracers of the dark matter density field --- either point-like (i.e., galaxies selected from radio to X-ray) or extended (i.e., clusters and gravitational lensing) --- in order to measure the bias and redshift distribution of intensities of infrared-emitting dusty star-forming galaxies and AGN. By locating HeRS in Stripe 82, we maximize the overlap with available and upcoming cosmological surveys. The band-merged catalog contains 3.3x10$^4$ sources detected at a significance of >3 $sigma$ (including confusion noise). The maps and catalog are available at http://www.astro.caltech.edu/hers/



قيم البحث

اقرأ أيضاً

121 - Kevin Bundy 2015
The Stripe 82 Massive Galaxy Catalog (S82-MGC) is the largest-volume stellar mass-limited sample of galaxies beyond z~1 constructed to date. Spanning 139.4 deg2, the S82-MGC includes a mass-limited sample of 41,770 galaxies with log Mstar > 11.2 to z ~0.7, sampling a volume of 0.3 Gpc3, roughly equivalent to the volume of the Sloan Digital Sky Survey-I/II (SDSS-I/II) z < 0.15 MAIN sample. The catalog is built on three pillars of survey data: the SDSS Stripe 82 Coadd photometry which reaches r-band magnitudes of 23.5 AB, YJHK photometry at depths of 20th magnitude (AB) from the UK Infrared Deep Sky Survey (UKIDSS) Large Area Survey, and over 70,000 spectroscopic galaxy redshifts from SDSS-I/II and the Baryon Oscillation Spectroscopic Survey (BOSS). We describe the catalog construction and verification, the production of 9-band matched aperture photometry, tests of existing and newly estimated photometric redshifts required to supplement spectroscopic redshifts for 55% of the log Mstar > 11.2 sample, and geometric masking. We provide near-IR based stellar mass estimates and compare these to previous estimates. All catalog products are made publicly available. The S82-MGC not only addresses previous statistical limitations in high-mass galaxy evolution studies but begins tackling inherent data challenges in the coming era of wide-field imaging surveys.
We present 226 large ultra-diffuse galaxy (UDG) candidates ($r_e > 5.3$arcsec, $mu_{0,g} > 24$ mag arcsec$^{-2}$) in the SDSS Stripe 82 region recovered using our improved procedure developed in anticipation of processing the entire Legacy Surveys fo otprint. The advancements include less constrained structural parameter fitting, expanded wavelet filtering criteria, consideration of Galactic dust, estimates of parameter uncertainties and completeness based on simulated sources, and refinements of our automated candidate classification. We have a sensitivity $sim$1 mag fainter in $mu_{0,g}$ than the largest published catalog of this region. Using our completeness-corrected sample, we find that (1) there is no significant decline in the number of UDG candidates as a function of $mu_{0,g}$ to the limit of our survey ($sim$ 26.5 mag arcsec$^{-2}$); (2) bluer candidates have smaller Sersic $n$; (3) most blue ($g-r < 0.45$ mag) candidates have $mu_{0,g} lesssim 25$ mag arcsec$^{-2}$ and will fade to populate the UDG red sequence we observe to $sim 26.5$ mag arcsec$^{-2}$; (4) any red UDGs that exist significantly below our $mu_{0,g}$ sensitivity limit are not descended from blue UDGs in our sample; and (5) candidates with lower $mu_{0,g}$ tend to smaller $n$. We anticipate that the final SMUDGes sample will contain $sim$ 30$times$ as many candidates.
We present the VISTA-CFHT Stripe 82 (VICS82) survey: a near-infrared (J+Ks) survey covering 150 square degrees of the Sloan Digital Sky Survey (SDSS) equatorial Stripe 82 to an average depth of J=21.9 AB mag and Ks=21.4 AB mag (80% completeness limit s; 5-sigma point source depths are approximately 0.5 mag brighter). VICS82 contributes to the growing legacy of multi-wavelength data in the Stripe 82 footprint. The addition of near-infrared photometry to the existing SDSS Stripe 82 coadd ugriz photometry reduces the scatter in stellar mass estimates to delta log(M_stellar)~0.3 dex for galaxies with M_stellar>10^9M_sun at z~0.5, and offers improvement compared to optical-only estimates out to z~1, with stellar masses constrained within a factor of approximately 2.5. When combined with other multi-wavelength imaging of the Stripe, including moderate-to-deep ultraviolet (GALEX), optical and mid-infrared (Spitzer IRAC) coverage, as well as tens of thousands of spectroscopic redshifts, VICS82 gives access to approximately 0.5 Gpc^3 of comoving volume. Some of the main science drivers of VICS82 include (a) measuring the stellar mass function of L^star galaxies out to z~1; (b) detecting intermediate redshift quasars at 2<z<3.5; (c) measuring the stellar mass function and baryon census of clusters of galaxies, and (d) performing optical/near-infrared-cosmic microwave background lensing cross-correlation experiments linking stellar mass to large-scale dark matter structure. Here we define and describe the survey, highlight some early science results and present the first public data release, which includes an SDSS-matched catalogue as well as the calibrated pixel data itself.
We derived constraints on cosmological parameters using weak lensing peak statistics measured on the $sim130~{rm deg}^2$ of the Canada-France-Hawaii Telescope Stripe 82 Survey (CS82). This analysis demonstrates the feasibility of using peak statistic s in cosmological studies. For our measurements, we considered peaks with signal-to-noise ratio in the range of $ u=[3,6]$. For a flat $Lambda$CDM model with only $(Omega_{rm m}, sigma_8)$ as free parameters, we constrained the parameters of the following relation $Sigma_8=sigma_8(Omega_{rm m}/0.27)^{alpha}$ to be: $Sigma_8=0.82 pm 0.03 $ and $alpha=0.43pm 0.02$. The $alpha$ value found is considerably smaller than the one measured in two-point and three-point cosmic shear correlation analyses, showing a significant complement of peak statistics to standard weak lensing cosmological studies. The derived constraints on $(Omega_{rm m}, sigma_8)$ are fully consistent with the ones from either WMAP9 or Planck. From the weak lensing peak abundances alone, we obtained marginalised mean values of $Omega_{rm m}=0.38^{+0.27}_{-0.24}$ and $sigma_8=0.81pm 0.26$. Finally, we also explored the potential of using weak lensing peak statistics to constrain the mass-concentration relation of dark matter halos simultaneously with cosmological parameters.
We present first results from our study of the properties of ~400 low redshift (z < 0.5) quasars, based on a large homogeneous dataset derived from the Stripe 82 area of the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). For this sky region, d eep (r~22.4) u,g,r,i,z images are available, up to ~2 mag deeper than standard SDSS images, allowing us to study both the host galaxies and the Mpc-scale environments of the quasars. This sample greatly outnumbers previous studies of low redshift quasar hosts, from the ground or from space. Here we report the preliminary results for the quasar host galaxies. We are able to resolve the host galaxy in ~80 % of the quasars. The quasar hosts are luminous and large, the majority of them in the range between M*-1 and M*-2, and with ~10 kpc galaxy scale-lengths. Almost half of the host galaxies are best fit with an exponential disk, while the rest are spheroid-dominated. There is a reasonable relation between the central black hole mass and the host galaxy luminosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا