ﻻ يوجد ملخص باللغة العربية
Space-based transit search missions such as Kepler are collecting large numbers of stellar light curves of unprecedented photometric precision and time coverage. However, before this scientific goldmine can be exploited fully, the data must be cleaned of instrumental artefacts. We present a new method to correct common-mode systematics in large ensembles of very high precision light curves. It is based on a Bayesian linear basis model and uses shrinkage priors for robustness, variational inference for speed, and a de-noising step based on empirical mode decomposition to prevent the introduction of spurious noise into the corrected light curves. After demonstrating the performance of our method on a synthetic dataset, we apply it to the first month of Kepler data. We compare the results, which are publicly available, to the output of the Kepler pipelines pre-search data conditioning, and show that the two generally give similar results, but the light curves corrected using our approach have lower scatter, on average, on both long and short timescales. We finish by discussing some limitations of our method and outlining some avenues for further development. The trend-corrected data produced by our approach are publicly available.
We present ARC2 (Astrophysically Robust Correction 2), an open-source Python-based systematics-correction pipeline to correct for the Kepler prime mission long cadence light curves. The ARC2 pipeline identifies and corrects any isolated discontinuiti
A survey of known threshold excitations of mirror systems suggests a means to estimate masses of nuclear systems that are uncertain or not known, as does a trend in the relative energies of isobaric ground states. Using both studies and known mirror-
Images taken with modern detectors require calibration via flat fielding to obtain the same flux scale across the whole image. One method for obtaining the best possible flat fielding accuracy is to derive a photometric model from dithered stellar ob
We analyse the stochastic properties of the 49 pulsars that comprise the first International Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model selection to determine the optimal description of the stochastic signa
Missions such as WMAP or Planck measure full-sky fluctuations of the cosmic microwave background and foregrounds, among which bright compact source emissions cover a significant fraction of the sky. To accurately estimate the diffuse components, the