ترغب بنشر مسار تعليمي؟ اضغط هنا

Complexity in animal communication: Estimating the size of N-Gram structures

141   0   0.0 ( 0 )
 نشر من قبل Reginald Smith
 تاريخ النشر 2013
والبحث باللغة English
 تأليف Reginald D. Smith




اسأل ChatGPT حول البحث

In this paper, new techniques that allow conditional entropy to estimate the combinatorics of symbols are applied to animal communication studies to estimate the communications repertoire size. By using the conditional entropy estimates at multiple orders, the paper estimates the total repertoire sizes for animal communication across bottlenose dolphins, humpback whales, and several species of birds for N-grams length one to three. In addition to discussing the impact of this method on studies of animal communication complexity, the reliability of these estimates is compared to other methods through simulation. While entropy does undercount the total repertoire size due to rare N-grams, it gives a more accurate picture of the most frequently used repertoire than just repertoire size alone.



قيم البحث

اقرأ أيضاً

129 - Bradly Alicea 2013
This paper will introduce a theory of emergent animal social complexity using various results from computational models and empirical results. These results will be organized into a vertical model of social complexity. This will support the perspecti ve that social complexity is in essence an emergent phenomenon while helping to answer two interrelated questions. The first of these involves how behavior is integrated at units of analysis larger than the individual organism. The second involves placing aggregate social events into the context of processes occurring within individual organisms over time (e.g. genomic and physiological processes). By using a complex systems perspective, five principles of social complexity can be identified. These principles suggest that lower-level mechanisms give rise to high-level mechanisms, ultimately resulting in metastable networks of social relations. These network structures then constrain lower-level phenomena ranging from transient, collective social groups to physiological regulatory mechanisms within individual organisms. In conclusion, the broader implications and drawbacks of applying the theory to a diversity of natural populations will be discussed.
We translate a coagulation-framentation model, describing the dynamics of animal group size distributions, into a model for the population distribution and associate the blue{nonlinear} evolution equation with a Markov jump process of a type introduc ed in classic work of H.~McKean. In particular this formalizes a model suggested by H.-S. Niwa [J.~Theo.~Biol.~224 (2003)] with simple coagulation and fragmentation rates. Based on the jump process, we develop a numerical scheme that allows us to approximate the equilibrium for the Niwa model, validated by comparison to analytical results by Degond et al. [J.~Nonlinear Sci.~27 (2017)], and study the population and size distributions for more complicated rates. Furthermore, the simulations are used to describe statistical properties of the underlying jump process. We additionally discuss the relation of the jump process to models expressed in stochastic differential equations and demonstrate that such a connection is justified in the case of nearest-neighbour interactions, as opposed to global interactions as in the Niwa model.
Information-theoretic methods have proven to be a very powerful tool in communication complexity, in particular giving an elegant proof of the linear lower bound for the two-party disjointness function, and tight lower bounds on disjointness in the m ulti-party number-in-the-hand (NIH) model. In this paper, we study the applicability of information theoretic methods to the multi-party number-on-the-forehead model (NOF), where determining the complexity of disjointness remains an important open problem. There are two basic parts to the NIH disjointness lower bound: a direct sum theorem and a lower bound on the one-bit AND function using a beautiful connection between Hellinger distance and protocols revealed by Bar-Yossef, Jayram, Kumar and Sivakumar [BYJKS04]. Inspired by this connection, we introduce the notion of Hellinger volume. We show that it lower bounds the information cost of multi-party NOF protocols and provide a small toolbox that allows one to manipulate several Hellinger volume terms and lower bound a Hellinger volume when the distributions involved satisfy certain conditions. In doing so, we prove a new upper bound on the difference between the arithmetic mean and the geometric mean in terms of relative entropy. We then apply these new tools to obtain a lower bound on the informational complexity of the AND_k function in the NOF setting. Finally, we discuss the difficulties of proving a direct sum theorem for information cost in the NOF model.
Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa.
147 - John C. Baez 2021
Suppose we have $n$ different types of self-replicating entity, with the population $P_i$ of the $i$th type changing at a rate equal to $P_i$ times the fitness $f_i$ of that type. Suppose the fitness $f_i$ is any continuous function of all the popula tions $P_1, dots, P_n$. Let $p_i$ be the fraction of replicators that are of the $i$th type. Then $p = (p_1, dots, p_n)$ is a time-dependent probability distribution, and we prove that its speed as measured by the Fisher information metric equals the variance in fitness. In rough terms, this says that the speed at which information is updated through natural selection equals the variance in fitness. This result can be seen as a modified version of Fishers fundamental theorem of natural selection. We compare it to Fishers original result as interpreted by Price, Ewens and Edwards.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا