ترغب بنشر مسار تعليمي؟ اضغط هنا

Torsion-balance probes of fundamental physics

328   0   0.0 ( 0 )
 نشر من قبل Eric G. Adelberger
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. G. Adelberger




اسأل ChatGPT حول البحث

This white paper is submitted as part of Snowmass2013 (subgroup CF2). The extraordinary sensitivity of torsion-balances can be used to search for the ultra-feeble forces suggested by attempts to unify gravity with the other fundamental interactions. The motivation, the results and their implications as well as the future prospects of this work are summarized. The experiments include tests of the universality of free fall (weak equivalence principle), probes of the short-distance behavior of gravity (inverse-square law tests for extra dimensions and exchange forces from new meV scale bosons), and Planck-scale tests of Lorentz invariance (preferred-frame effects, non-commutative geometries).



قيم البحث

اقرأ أيضاً

Radio-loud neutron stars known as pulsars allow a wide range of experimental tests for fundamental physics, ranging from the study of super-dense matter to tests of general relativity and its alternatives. As a result, pulsars provide strong-field te sts of gravity, they allow for the direct detection of gravitational waves in a pulsar timing array, and they promise the future study of black hole properties. This contribution gives an overview of the on-going experiments and recent results.
46 - Saori Pastore 2017
The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between low-lying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for $A>12$ nuclei.
Future gravitational-wave observations will enable unprecedented and unique science in extreme gravity and fundamental physics answering questions about the nature of dynamical spacetimes, the nature of dark matter and the nature of compact objects.
72 - C. Goddi , H. Falcke , M. Kramer 2016
Einsteins General Theory of Relativity (GR) successfully describes gravity. The most fundamental predictions of GR are black holes (BHs), but in spite of many convincing BH candidates in the Universe, there is no conclusive experimental proof of thei r existence using astronomical observations in the electromagnetic spectrum. Are BHs real astrophysical objects? Does GR hold in its most extreme limit or are alternatives needed? The prime target to address these fundamental questions is in the center of our own Galaxy, which hosts the closest and best-constrained supermassive BH candidate in the Universe, Sagittarius A* (Sgr A*). Three different types of experiments hold the promise to test GR in a strong-field regime using observations of Sgr A* with new-generation instruments. The first experiment aims to image the relativistic plasma emission which surrounds the event horizon and forms a shadow cast against the background, whose predicted size (~50 microarcseconds) can now be resolved by upcoming VLBI experiments at mm-waves such as the Event Horizon Telescope (EHT). The second experiment aims to monitor stars orbiting Sgr A* with the upcoming near-infrared interferometer GRAVITY at the Very Large Telescope (VLT). The third experiment aims to time a radio pulsar in tight orbit about Sgr A* using radio telescopes (including the Atacama Large Millimeter Array or ALMA). The BlackHoleCam project exploits the synergy between these three different techniques and aims to measure the main BH parameters with sufficient precision to provide fundamental tests of GR and probe the spacetime around a BH in any metric theory of gravity. Here, we review our current knowledge of the physical properties of Sgr A* as well as the current status of such experimental efforts towards imaging the event horizon, measuring stellar orbits, and timing pulsars around Sgr A*.
We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important co ntexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا