ترغب بنشر مسار تعليمي؟ اضغط هنا

[Fe II] 1.64 um Features of Jets and Outflows from Young Stellar Objects in the Carina Nebula

112   0   0.0 ( 0 )
 نشر من قبل Jong-Ho Shinn
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present [Fe II] 1.64 {mu}m imaging observations for jets and outflows from young stellar objects (YSOs) over the northern part (~ 24x45) of the Carina Nebula, a massive star forming region. The observations were performed with IRIS2 of Anglo-Australian Telescope and the seeing was ~1.5+-0.5. Eleven jet and outflow features are detected at eight different regions, and are named as Ionized Fe Objects (IFOs). One Herbig-Haro object candidate missed in Hubble Space Telescope H{alpha} observations is newly identified as HHc-16, referring our [Fe II] images. IFOs have knotty or longish shapes, and the detection rate of IFOs against previously identified YSOs is 1.4 %, which should be treated as a lower limit. Four IFOs show an anti-correlated peak intensities in [Fe II] and H{alpha}, where the ratio I([Fe II])/I(H{alpha}) is higher for longish IFOs than for knotty IFOs. We estimate the outflow mass loss rate from the [Fe II] flux, using two different methods. The jet-driving objects are identified for three IFOs (IFO-2, -4, and -7), for which we study the relations between the outflow mass loss rate and the YSO physical parameters from the radiative transfer model fitting. The ratios of the outflow mass loss rate over the disk accretion rate are consistent for IFO-4 and -7 with the previously reported values (10^-2-10^+1), while it is higher for IFO-2. This excess may be from the underestimation of the disk accretion rate. The jet-driving objects are likely to be low- or intermediate-mass stars. Other YSO physical parameters, such as luminosity and age, show reasonable relations or trends.



قيم البحث

اقرأ أيضاً

Jets and outflows are ubiquitous in the process of formation of stars since outflow is intimately associated with accretion. Free-free (thermal) radio continuum emission is associated with these jets. This emission is relatively weak and compact, and sensitive radio interferometers are required to study it. Observations in the cm range are most useful to trace the base of the ionized jets, close to the central protostar, where optical or near-IR imaging is made difficult by the high extinction present. Radio recombination lines in jets (in combination with proper motions) should provide their 3D kinematics at very small scale. Future instruments such as the Square Kilometre Array (SKA) and the Next Generation Very Large Array (ngVLA) will be crucial to perform this kind of sensitive observations. Thermal jets are associated with both high and low mass protostars and possibly even with substellar objects. The ionizing mechanism of these radio jets appears to be related to shocks in the associated outflows, as suggested by the observed correlation between the cm luminosity and the outflow momentum rate. Some protostellar jets show indications of non-thermal emission in their lobes. Linearly polarized synchrotron emission has been found in the jet of HH 80-81, allowing one to map the jet magnetic field, a key ingredient to determine the collimation and ejection mechanisms. As only a fraction of the emission is polarized, very sensitive observations such as those that will be feasible with the interferometers previously mentioned are required to perform studies in a large sample of sources. Jets are present in many kinds of astrophysical scenarios. Characterizing radio jets in young stars, where thermal emission allows one to determine their physical conditions, would also be useful in understanding acceleration and collimation mechanisms in all kinds of astrophysical jets.
We performed a deep wide-field (6.76 deg^2) near-infrared survey with the VISTA telescope that covers the entire extent of the Carina nebula complex (CNC). The point-source catalog created from these data contains around four million individual objec ts down to masses of 0.1 M_sun. We present a statistical study of the large-scale spatial distribution and an investigation of the clustering properties of infrared-excesses objects, which are used to trace disk-bearing young stellar objects (YSOs). We find that a (J - H) versus (Ks - [4.5]) color-color diagram is well suited to tracing the population of YSO-candidates (cYSOs) by their infrared excess. We identify 8781 sources with strong infrared excess, which we consider as cYSOs. This sample is used to investigate the spatial distribution of the cYSOs with a nearest-neighbor analysis. The surface density distribution of cYSOs agrees well with the shape of the clouds as seen in our Herschel far-infrared survey. The strong decline in the surface density of excess sources outside the area of the clouds supports the hypothesis that our excess-selected sample consists predominantly of cYSOs with a low level of background contamination. This analysis allows us to identify 14 groups of cYSOs outside the central area. Our results suggest that the total population of cYSOs in the CNC comprises about 164000 objects, with a substantial fraction (~35%) located in the northern, still not well studied parts. Our cluster analysis suggests that roughly half of the cYSOs constitute a non-clustered, dispersed population.
58 - John Richer 1999
We review some aspects of the bipolar molecular outflow phenomenon. In particular, we compare the morphological properties, energetics and velocity structures of outflows from high and low-mass protostars and investigate to what extent a common sourc e model can explain outflows from sources of very different luminosities. Many flow properties, in particular the CO spatial and velocity structure, are broadly similar across the entire luminosity range, although the evidence for jet-entrainment is still less clear cut in massive flows than in low-mass systems. We use the correlation of flow momentum deposition rate with source luminosity to estimate the ratio f of mass ejection to mass accretion rate. From this analysis, it appears that a common driving mechanism could operate across the entire luminosity range. However, we stress that for the high-mass YSOs, the detailed physics of this mechanism and how the ejected wind/jet entrains ambient material remain to be addressed. We also briefly consider the alternative possibility that high-mass outflows can be explained by the recently proposed circulation models, and discuss several shortcomings of those models. Finally, we survey the current evidence on the nature of the shocks driven by YSOs during their pre-main-sequence evolution.
There is a subclass of the X-ray jets from young stellar objects which are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models attribute the strong heating to shocks in the jets. However, the mechanism that local izes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot corona with a temperature of > 10^6 K even if the average field strength in the disk is moderately weak, > 1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass loss rate are consistent with the prediction of our model in the case of the disk magnetic field strength of ~20 G and the heating region of < 0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool to estimate the magnetic field strength. We also found that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead-zone size.
136 - B. Stelzer 2015
This article represents a short review of the variability characteristics of young stellar objects. Variability is a key property of young stars. Two major origins may be distinguished: a scaled-up version of the magnetic activity seen on main-sequen ce stars and various processes related to circumstellar disks, accretion and outflows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا