ﻻ يوجد ملخص باللغة العربية
The development of graphene electronics requires the integration of graphene devices with Si-CMOS technology. Most strategies involve the transfer of graphene sheets onto silicon, with the inherent difficulties of clean transfer and subsequent graphene nano-patterning that degrades considerably the electronic mobility of nanopatterned graphene. Epitaxial graphene (EG) by contrast is grown on an essentially perfect crystalline (semi-insulating) surface, and graphene nanostructures with exceptional properties have been realized by a selective growth process on tailored SiC surface that requires no graphene patterning. However, the temperatures required in this structured growth process are too high for silicon technology. Here we demonstrate a new graphene to Si integration strategy, with a bonded and interconnected compact double-wafer structure. Using silicon-on-insulator technology (SOI) a thin monocrystalline silicon layer ready for CMOS processing is applied on top of epitaxial graphene on SiC. The parallel Si and graphene platforms are interconnected by metal vias. This method inspired by the industrial development of 3d hyper-integration stacking thin-film electronic devices preserves the advantages of epitaxial graphene and enables the full spectrum of CMOS processing.
High-performance graphene field-effect transistors have been fabricated on epitaxial graphene synthesized on a two-inch SiC wafer, achieving a cutoff frequency of 100 GHz for a gate length of 240 nm. The high-frequency performance of these epitaxial
Graphene field-effect transistors are integrated with solution-processed multilayer hybrid organic-inorganic self-assembled nanodielectrics (SANDs). The resulting devices exhibit low-operating voltage (2 V), negligible hysteresis, current saturation
A major challenge for the next generation of spintronics devices is the implementation of ferromagnetic-semiconductor thin films as spin injectors and detectors. Spin-polarised carrier injection cannot be accomplished efficiently from metals, and cou
Control of the position and density of semiconductor quantum dots (QDs) is vital for a variety of emergent technologies, such as quantum photonics and advanced opto-electronic devices. However, established ordering methods typically call for ex-situ
We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission