ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of transverse condensation via Hanbury Brown--Twiss correlations

142   0   0.0 ( 0 )
 نشر من قبل Karen Kheruntsyan
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A fundamental property of a three-dimensional Bose-Einstein condensate (BEC) is long-range coherence, however, in systems of lower dimensionality, not only is the long range coherence destroyed, but additional states of matter are predicted to exist. One such state is a `transverse condensate, first predicted by van Druten and Ketterle [Phys. Rev. Lett. 79, 549 (1997)], in which the gas condenses in the transverse dimensions of a highly anisotropic trap while remaining thermal in the longitudinal dimension. Here we detect the transition from a three-dimensional thermal gas to a gas undergoing transverse condensation by probing Hanbury Brown--Twiss correlations.



قيم البحث

اقرأ أيضاً

Quadratic detection in linear mesoscopic transport systems produces cross terms that can be viewed as interference signals reflecting statistical properties of charge carriers. In electronic systems these cross term interferences arise from exchange effects due to Pauli principle. Here we demonstrate fermionic Hanbury Brown and Twiss (HBT) exchange phenomena due to indistinguishability of charge carriers in a diffusive graphene system. These exchange effects are verified using current-current cross correlations in combination with regular shot noise (autocorrelation) experiments at microwave frequencies. Our results can be modeled using semiclassical analysis for a square-shaped metallic diffusive conductor, including contributions from contact transparency. The experimentally determined HBT exchange factor values lie between the calculated ones for coherent and hot electron transport.
111 - Bin Bai , Jianbin Liu , Yu Zhou 2017
Two-photon superbunching of pseudothermal light is observed with single-mode continuous-wave laser light in a linear optical system. By adding more two-photon paths via three rotating ground glasses,g(2)(0) = 7.10 is experimentally observed. The seco nd-order temporal coherence function of superbunching pseudothermal light is theoretically and experimentally studied in detail. It is predicted that the degree of coherence of light can be increased dramatically by adding more multi-photon paths. For instance, the degree of the second- and third-order coherence of the superbunching pseudothermal light with five rotating ground glasses can reach 32 and 7776, respectively. The results are helpful to understand the physics of superbunching and to improve the visibility of thermal light ghost imaging.
124 - Li-Gang Wang 2008
We show that the essential physics of the Hanbury Brown-Twiss (HBT) and the thermal light ghost imaging experiments is the same, i.e., due to the intensity fluctuations of the thermal light. However, in the ghost imaging experiments, a large number o f bits information needs to be treated together, whereas in the HBT there is only one bit information required to be obtained. In the HBT experiment far field is used for the purpose of easy detection, while in the ghost image experiment near (or not-far) field is used for good quality image.
We report measurements of Hanbury Brown and Twiss correlation of coherent light transmitted through disordered one-dimensional photonic lattices. Although such a lattice exhibits transverse Anderson localization when a single input site is excited, u niform excitation precludes its observation. By examining the Hanbury Brown--Twiss correlation for a uniformly excited disordered lattice, we observe intensity anticorrelations associated with photon antibunching--a signature of non-Gaussian statistics. Although the measured average intensity distribution is uniform, transverse Anderson localization nevertheless underlies the observed anticorrelation.
We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high tra nsverse coherence properties of the FEL beam with a degree of transverse coherence of about 80% and degeneracy parameter of the order 10^9 that makes it similar to laser sources. Intensity correlation measurements in spatial and frequency domain gave an estimate of the FEL average pulse duration of 50 fs. Our measurements of the higher-order correlation functions indicate that FEL radiation obeys Gaussian statistics, which is characteristic to chaotic sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا