ترغب بنشر مسار تعليمي؟ اضغط هنا

A low-loss photonic silica nanofiber for higher-order modes

358   0   0.0 ( 0 )
 نشر من قبل Sylvain Ravets
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical nanofibers confine light to subwavelength scales, and are of interest for the design, integration, and interconnection of nanophotonic devices. Here we demonstrate high transmission (> 97%) of the first family of excited modes through a 350 nm radius fiber, by appropriate choice of the fiber and precise control of the taper geometry. We can design the nanofibers so that these modes propagate with most of their energy outside the waist region. We also present an optical setup for selectively launching these modes with less than 1% fundamental mode contamination. Our experimental results are in good agreement with simulations of the propagation. Multimode optical nanofibers expand the photonic toolbox, and may aid in the realization of a fully integrated nanoscale device for communication science, laser science or other sensing applications.



قيم البحث

اقرأ أيضاً

Higher-order modes up to LP$_{33}$ are controllably excited in water-filled kagom{e}- and bandgap-style hollow-core photonic crystal fibers (HC-PCF). A spatial light modulator is used to create amplitude and phase distributions that closely match tho se of the fiber modes, resulting in typical launch efficiencies of 10-20% into the liquid-filled core. Modes, excited across the visible wavelength range, closely resemble those observed in air-filled kagom{e} HC-PCF and match numerical simulations. Mode indices are obtained by launching plane-waves at specific angles onto the fiber input-face and comparing the resulting intensity pattern to that of a particular mode. These results provide a framework for spatially-resolved sensing in HC-PCF microreactors and fiber-based optical manipulation.
We demonstrate the fabrication of ultra-low-loss, all-fiber Fabry-Perot cavities containing a nanofiber section, optimized for cavity quantum electrodynamics. By continuously monitoring the finesse and fiber radius during fabrication of a nanofiber b etween two fiber Bragg gratings, we are able to precisely evaluate taper transmission as a function of radius. The resulting cavities have an internal round-trip loss of only 0.31% at a nanofiber waist radius of 207 nm, with a total finesse of 1380, and a maximum expected internal cooperativity of $sim$ 1050 for a cesium atom on the nanofiber surface. Our ability to fabricate such high-finesse nanofiber cavities may open the door for the realization of high-fidelity scalable quantum networks.
Linearly polarized light can exert a torque on a birefringent object when passing through it. This phenomena, present in Maxwells equations, was revealed by Poynting and beautifully demonstrated in the pioneer experiments of Beth and Holbourn. Modern uses of this effect lie at the heart of optomechanics with angular momentum exchange between light and matter. A milestone of controlling movable massive objects with light is the reduction of their mechanical fluctuations, namely cooling. Optomechanical cooling has been implemented through linear momentum transfer of the electromagnetic field in a variety of systems, but remains unseen for angular momentum transfer to rotating objects. We present the first observation of cooling in a rotational optomechanical system. Particularly, we reduce the thermal noise of the torsional modes of a birefringent optical nanofiber, with resonant frequencies near 200 kHz and a Q-factor above $mathbf{2times10^4}$. Nanofibers are centimeter long, sub-micrometer diameter optical fibers that confine propagating light, reaching extremely large intensities, hence enhancing optomechanical effects. The nanofiber is driven by a propagating linearly polarized laser beam. We use polarimetry of a weak optical probe propagating through the nanofiber as a proxy to measure the torsional response of the system. Depending on the polarization of the drive, we can observe both reduction and enhancement of the thermal noise of many torsional modes, with noise reductions beyond a factor of two. The observed effect opens a door to manipulate the torsional motion of suspended optical waveguides in general, expanding the field of rotational optomechanics, and possibly exploiting its quantum nature for precision measurements in mesoscopic systems.
404 - David Elvira , V. Verma 2011
We report on the higher-order photon correlations of a high-$beta$ nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single photon detector we measured g$^{(n)}(vec{0})$ with $n$=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of dipoles and photons involved in the lasing process.
Optimum suppression of higher order modes in single-ring hollow-core photonic crystal fibers (SR-PCFs) occurs when the capillary-to-core diameter ratio d/D = 0.68. Here we report that, in SR-PCFs with sub-optimal values of d/D, higher-order mode supp ression can be recovered by spinning the preform during fiber drawing, thus introducing a continuous helical twist. This geometrically increases the effective axial propagation constant (initially too low) of the LP01-like modes of the capillaries surrounding the core, enabling robust single-mode operation. The effect is explored by means of extensive numerical modeling, an analytical model and a series of experiments. Prism-assisted side-coupling is used to investigate the losses and near-field patterns of individual fiber modes in both the straight and twisted cases. More than 12 dB/m improvement in higher order mode suppression is achieved experimentally in a twisted PCF. The measurements also show that the higher order mode profiles change with twist rate, as predicted by numerical simulations. Helical twisting offers an additional tool for achieving effectively endlessly single-mode operation in hollow-core SR-PCFs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا