ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of self-organized driven particles with competing range interaction

121   0   0.0 ( 0 )
 نشر من قبل Vyacheslav Misko
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-equilibrium self-organized patterns formed by particles interacting through competing range interaction are driven over a substrate by an external force. We show that, with increasing driving force, the pre-existed static patterns evolve into dynamic patterns either via disordered phase or depinned patterns, or via the formation of non-equilibrium stripes. Strikingly, the stripes are formed either in the direction of the driving force or in the transverse direction, depending on the pinning strength. The revealed dynamical patterns are summarized in a dynamical phase diagram.



قيم البحث

اقرأ أيضاً

We study the effects of lattice type on polaron dynamics using a continuous-time quantum Monte-Carlo approach. Holstein and screened Froehlich polarons are simulated on a number of different Bravais lattices. The effective mass, isotope coefficients, ground state energy and energy spectra, phonon numbers, and density of states are calculated. In addition, the results are compared with weak and strong coupling perturbation theory. For the Holstein polaron, it is found that the crossover between weak and strong coupling results becomes sharper as the coordination number is increased. In higher dimensions, polarons are much less mobile at strong coupling, with more phonons contributing to the polaron. The total energy decreases monotonically with coupling. Spectral properties of the polaron depend on the lattice type considered, with the dimensionality contributing to the shape and the coordination number to the bandwidth. As the range of the electron-phonon interaction is increased, the coordination number becomes less important, with the dimensionality taking the leading role.
A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider a fundamental but still unexplored aspect of the patterns arising in the system of actively moving units, i.e., their segregation taking place when two kinds of them with different adhesive properties are present. The process of segregation is studied by a model made of self-propelled particles such that the particles have a tendency to adhere only to those which are of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that the segregation kinetics is very different from the non-driven counterparts and is described by the new scaling exponents $zsimeq 1$ and $zsimeq 0.8$ for the 1:1 and the non-equal ratio of the two constituents, respectively. Our results are in agreement with a recent observation of segregating tissue cells emph{in vitro}.
We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in the Brownian limit, obtained as the persistence time vanishes. By increasing the persistence time, the system departs more strongly from thermal equilibrium and we provide a comprehensive numerical analysis of the structure and dynamics of the resulting active fluid. Finite persistence times profoundly affect the static structure of the fluid and give rise to nonequilibrium velocity correlations that are absent in thermal systems. Despite these nonequilibrium features, for any value of the persistence time we observe a nonequilibrium glass transition as the effective temperature is decreased. Surprisingly, increasing departure from thermal equilibrium is found to promote (rather than suppress) the glassy dynamics. Overall, our results suggest that with increasing persistence time, microscopic properties of the active fluid change quantitatively, but the broad features of the nonequilibrium glassy dynamics observed with decreasing the effective temperature remain qualitatively similar to those of thermal glass-formers.
Elementary particles possess quantized values of charge and internal angular momentum or spin. These characteristics do not change when the particles interact with other particles or fields as long as they preserve their entities. Quantum theory does not explain this quantization. It is introduced into the theory a priori. An interacting particle is an open system and thus does not obey conservation laws. However, an open system may create dynamically stable states with unchanged dynamical variables via self-organization. In self-organized systems stability is achieved through the interplay of nonlinearity and dissipation. Can self-organization be responsible for particle formation? In this paper we develop and analyze a particle model based on qualitative dynamics and the Feigenbaum universality. This model demonstrates that elementary particles can be described as self-organized dynamical systems belonging to a wide class of systems characterized by a hierarchy of period-doubling bifurcations. This semi-qualitative heuristic model gives possible explanations for charge and action quantization, and the origination and interrelation between the strong, weak, and electromagnetic forces, as well as SU(2) symmetry. It also provides a basis for particle taxonomy endorsed by the Standard Model. The key result is the discovery that the Planck constant is intimately related to elementary charge.
We develop a statistical theory for the dynamics of non-aligning, non-interacting self-propelled particles confined in a convex box in two dimensions. We find that when the size of the box is small compared to the persistence length of a particles tr ajectory (strong confinement), the steady-state density is zero in the bulk and proportional to the local curvature on the boundary. Conversely, the theory may be used to construct the box shape that yields any desired density distribution on the boundary. When the curvature variations are small, we also predict the distribution of orientations at the boundary and the exponential decay of pressure as a function of box size recently observed in 3D simulations in a spherical box.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا