ترغب بنشر مسار تعليمي؟ اضغط هنا

Formulation of Non-steady-state Dust Formation Process in Astrophysical Environments

124   0   0.0 ( 0 )
 نشر من قبل Takaya Nozawa
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Takaya Nozawa




اسأل ChatGPT حول البحث

The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO3 grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f_{con}, and average radius a_{ave} of newly formed grains in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule tau_{coll} is much smaller than the timescale tau_{sat} with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f_{con} and a larger a_{ave}. Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies Lambda = tau_{sat}/tau_{coll} > 30 during the formation of dust, and find that f_{con} and a_{ave} are uniquely determined by Lambda_{on} at the onset time t_{on} of dust formation. The approximation formulae for f_{con} and a_{ave} as a function of Lambda_{on} could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars.



قيم البحث

اقرأ أيضاً

Classical novae commonly show evidence of rapid dust formation within months of the outburst. However, it is unclear how molecules and grains are able to condense within the ejecta, given the potentially harsh environment created by ionizing radiatio n from the white dwarf. Motivated by the evidence for powerful radiative shocks within nova outflows, we propose that dust formation occurs within the cool, dense shell behind these shocks. We incorporate a simple molecular chemistry network and classical nucleation theory with a model for the thermodynamic evolution of the post-shock gas, in order to demonstrate the formation of both carbon and forsterite ($rm Mg_2SiO_4$) grains. The high densities due to radiative shock compression ($n sim 10^{14}$ cm$^{-3}$) result in CO saturation and rapid dust nucleation. Grains grow efficiently to large sizes $gtrsim 0.1mu$m, in agreement with IR observations of dust-producing novae, and with total dust masses sufficient to explain massive extinction events such as V705 Cas. As in dense stellar winds, dust formation is CO-regulated, with carbon-rich flows producing carbon-rich grains and oxygen-rich flows primarily forming silicates. CO is destroyed by non-thermal particles accelerated at the shock, allowing additional grain formation at late times, but the efficiency of this process appears to be low. Given observations showing that individual novae produce both carbonaceous and silicate grains, we concur with previous works attributing this bimodality to chemical heterogeneity of the ejecta. Nova outflows are diverse and inhomogeneous, and the observed variety of dust formation events can be reconciled by different abundances, the range of shock properties, and the observer viewing angle. The latter may govern the magnitude of extinction, with the deepest extinction events occurring for observers within the binary equatorial plane.
We present the first holographic simulations of non-equilibrium steady state formation in strongly coupled $mathcal{N}=4$ SYM theory in 3+1 dimensions. We initially join together two thermal baths at different temperatures and chemical potentials and compare the subsequent evolution of the combined system to analytic solutions of the corresponding Riemann problem and to numeric solutions of ideal and viscous hydrodynamics. The time evolution of the energy density that we obtain holographically is consistent with the combination of a shock and a rarefaction wave: A shock wave moves towards the cold bath, and a smooth broadening wave towards the hot bath. Between the two waves emerges a steady state with constant temperature and flow velocity, both of which are accurately described by a shock+rarefaction wave solution of the Riemann problem. In the steady state region, a smooth crossover develops between two regions of different charge density. This is reminiscent of a contact discontinuity in the Riemann problem. We also obtain results for the entanglement entropy of regions crossed by shock and rarefaction waves and find both of them to closely follow the evolution of the energy density.
We propose and investigate an exactly solvable model of non-equilibrium Luttinger liquid on a star graph, modeling a multi-terminal quantum wire junction. The boundary condition at the junction is fixed by an orthogonal matrix S, which describes the splitting of the electric current among the leads. The system is driven away from equilibrium by connecting the leads to heat baths at different temperatures and chemical potentials. The associated non-equilibrium steady state depends on S and is explicitly constructed. In this context we develop a non-equilibrium bosonization procedure and compute some basic correlation functions. Luttinger liquids with general anyon statistics are considered. The relative momentum distribution away from equilibrium turns out to be the convolution of equilibrium anyon distributions at different temperatures. Both the charge and heat transport are studied. The exact current-current correlation function is derived and the zero-frequency noise power is determined.
Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provid ed the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical applications --- situations with magnetar-strength fields (exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares and magnetically-powered central engines and jets of GRBs. Here, magnetic energy density is so high that its dissipation heats the plasma to MeV temperatures. Electron-positron pairs are then copiously produced, making the reconnection layer highly collisional and dressing it in a thick pair coat that traps radiation. The pressure is dominated by radiation and pairs. Yet, radiation diffusion across the layer may be faster than the global Alfven transit time; then, radiative cooling governs the thermodynamics and reconnection becomes a radiative transfer problem, greatly affected by the ultra-strong magnetic field. This overall picture is very different from our traditional picture of reconnection and thus represents a new frontier in reconnection research.
Modern models of s-process nucleosynthesis in stars require stellar reaction rates with high precision. Most of the neutron capture cross sections in the s-process have been measured and for an increasing number of reactions the required precision is achieved. This does not necessarily mean, however, that the stellar rates are constrained equally well because only capture on the ground state of a target is measured in the laboratory. Captures on excited states can considerably contribute to stellar rates already at typical s-process temperatures. We show that the ground state contribution X to a stellar rate is the relevant measure to identify reactions which are or could be well constrained by experiments and apply it to (n,gamma) reactions in the s-process. It is further shown that the maximally possible reduction in uncertainty of a rate through determination of the g.s. cross section is directly given by X. An error analysis of X is presented and it is found that X is a robust measure with overall small uncertainties. Several specific examples (neutron capture on 79Se, 95Zr, 121Sn, 187Os, and 193Pt) are discussed in detail. The ground state contributions for a set of 411 neutron capture reactions around the s-process path are presented in a table. This allows to identify reactions which may be better constrained by experiments and such which cannot be constrained by only measuring ground state cross sections (and thus require supplementary studies). General trends and implications are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا