ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Halpha Emission-Line Survey in the Orion Nebula Cluster

274   0   0.0 ( 0 )
 نشر من قبل Elza Szegedi-Elek
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from an Halpha emission-line survey in a one square degree area centered on the Orion Nebula Cluster, obtained with the Wide Field Grism Spectrograph-2 on the 2.2-meter telescope of the University of Hawaii. We identified 587 stars with Halpha emission, 99 of which, located mainly in the outer regions of the observed area, have not appeared in previous Halpha surveys. We determined the equivalent width (EW) of the line, and based on it classified 372 stars as classical T Tauri stars (CTTS) and 187 as weak line T Tauri stars (WTTS). Simultaneous r, i photometry indicates a limiting magnitude of r ~ 20 mag, but the sample is incomplete at r > 17 mag. The surface distribution of the Halpha emission stars reveals a clustered and a dispersed population, the former consisting of younger and more massive young stars than the latter. Comparison of the derived EWs with those found in the literature indicates variability of the Halpha line. We found that the typical amplitudes of the variability are not greater than a factor 2-3 in the most cases. We identified a subgroup of low-EW stars with infrared signatures indicative of optically thick accretion disks. We studied the correlations between the equivalent width and other properties of the stars. Based on literature data we examined several properties of our CTTS and WTTS subsamples and found significant differences in mid-infrared color indices, average rotational periods, and spectral energy distribution characteristics of the subsamples.



قيم البحث

اقرأ أيضاً

Using the United Kingdom Infrared Telescope on Mauna Kea, we have carried out a new near-infrared J, H, K monitoring survey of almost a square degree of the star-forming Orion Nebula Cluster with observations on 120 nights over three observing season s, spanning a total of 894 days. We monitored ~15,000 stars down to J=20 using the WFCAM instrument, and have extracted 1203 significantly variable stars from our data. By studying variability in young stellar objects (YSOs) in the H-K, K color-magnitude diagram, we are able to distinguish between physical mechanisms of variability. Many variables show color behavior indicating either dust-extinction or disk/accretion activity, but we find that when monitored for longer periods of time, a number of stars shift between these two variability mechanisms. Further, we show that the intrinsic timescale of disk/accretion variability in young stars is longer than that of dust-extinction variability. We confirm that variability amplitude is statistically correlated with evolutionary class in all bands and colors. Our investigations of these 1203 variables have revealed 73 periodic AA Tau type variables, many large-amplitude and long-period (P > 15 day) YSOs, including three stars showing widely-spaced periodic brightening events consistent with circumbinary disk activity, and four new eclipsing binaries. These phenomena and others indicate the activity of long-term disk/accretion variability processes taking place in young stars. We have made the light curves and associated data for these 1203 variables available online.
This paper checks on the roles of metallicity and evolutionary age in the appearance of the so-called Be phenomenon. Slitless CCD spectra were obtained covering the bulk of the Small Magellanic Cloud. For Halpha line emission twice as strong as the a mbient continuum, the survey is complete to spectral type B2/B3 on the main sequence. About 8120 spectra of 4437 stars were searched for emission lines in 84 open clusters. 370 emission-line stars were found, among them at least 231 near the main sequence. For 176 of them, photometry could be found in the OGLE database. For comparison with a higher-metallicity environment, the Galactic sample of the photometric Halpha survey by McSwain & Gies (2005) was used. Among early spectral sub-types, Be stars are more frequent by a factor 3-5 in the SMC than in the Galaxy. The distribution with spectral type is similar in both galaxies, i.e. not strongly dependent on metallicity. The fraction of Be stars does not seem to vary with local star density. The Be phenomenon mainly sets in towards the end of the main-sequence evolution (this trend may be more pronounced in the SMC); but some Be stars already form with Be-star characteristics. In all probability, the fractional critical angular rotation rate, omc, is one of the main parameters governing the occurrence of the Be phenomenon. If the Be character is only acquired during the course of evolution, the key circumstance is the evolution of omc, which not only is dependent on metallicity but differently so for different mass ranges.
We present a deep centimeter-wavelength catalog of the Orion Nebula Cluster (ONC), based on a 30h single-pointing observation with the Karl G. Jansky Very Large Array in its high-resolution A-configuration using two 1 GHz bands centered at 4.7 GHz an d 7.3 GHz. A total of 556 compact sources were detected in a map with a nominal rms noise of 3 muJy/bm, limited by complex source structure and the primary beam response. Compared to previous catalogs, our detections increase the sample of known compact radio sources in the ONC by more than a factor of seven. The new data show complex emission on a wide range of spatial scales. Following a preliminary correction for the wideband primary-beam response, we determine radio spectral indices for 170 sources whose index uncertainties are less than +/-0.5. We compare the radio to the X-ray and near-infrared point-source populations, noting similarities and differences.
We report new spectral types or spectral classification constraints for over 600 stars in the Orion Nebula Cluster (ONC) based on medium resolution R~ 1500-2000 red optical spectra acquired using the Palomar 200 and Kitt Peak 3.5m telescopes. Spectra l types were initially estimated for F, G, and early K stars from atomic line indices while for late K and M stars, constituting the majority of our sample, indices involving TiO and VO bands were used. To ensure proper classification, particularly for reddened, veiled, or nebula-contaminated stars, all spectra were then visually examined for type verification or refinement. We provide an updated spectral type table that supersedes Hillenbrand (1997), increasing the percentage of optically visible ONC stars with spectral type information from 68% to 90%. However, for many objects, repeated observations have failed to yield spectral types primarily due to the challenges of adequate sky subtraction against a bright and spatially variable nebular background. The scatter between our new and our previously determined spectral types is approximately 2 spectral sub-classes. We also compare our grating spectroscopy results with classification based on narrow-band TiO filter photometry from Da Rio et al. (2012, finding similar scatter. While the challenges of working in the ONC may explain much of the spread, we highlight several stars showing significant and unexplained bona fide spectral variations in observations taken several years apart; these and similar cases could be due to a combination of accretion and extinction changes. Finally, nearly 20% of ONC stars exhibit obvious Ca II triplet emission indicative of strong accretion.
We present a newly enlarged census of the compact radio population towards the Orion Nebula Cluster (ONC) using high-sensitivity continuum maps (3-10 $mu$Jy bm$^{-1}$) from a total of $sim30$ h centimeter-wavelength observations over an area of $sim$ 20$times20$ obtained in the C-band (4$-$8 GHz) with the Karl G. Jansky Very Large Array (VLA) in its high-resolution A-configuration. We thus complement our previous deep survey of the innermost areas of the ONC, now covering the field of view of the Chandra Orion Ultra-deep Project (COUP). Our catalog contains 521 compact radio sources of which 198 are new detections. Overall, we find that 17% of the (mostly stellar) COUP sources have radio counterparts, while 53% of the radio sources have COUP counterparts. Most notably, the radio detection fraction of X-ray sources is higher in the inner cluster and almost constant for $r>3$ (0.36 pc) from $theta^1$ Ori C suggesting a correlation between the radio emission mechanism of these sources and their distance from the most massive stars at the center of the cluster, for example due to increased photoionisation of circumstellar disks. The combination with our previous observations four years prior lead to the discovery of fast proper motions of up to $sim$373 km s$^{-1}$ from faint radio sources associated with ejecta of the OMC1 explosion. Finally, we search for strong radio variability. We found changes in flux density by a factor of $lesssim$5 within our observations and a few sources with changes by a factor $>$10 on long timescales of a few years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا