ﻻ يوجد ملخص باللغة العربية
The CMS collaboration at the LHC has reported a remarkable and unexpected phenomenon in very high-multiplicity high energy proton-proton collisions: a positive correlation between two particles produced at similar azimuthal angles, spanning a large range in rapidity. We suggest that this ridge-like correlation may be a reflection of the rare events generated by the collision of aligned flux tubes connecting the valence quarks in the wave functions of the colliding protons. The spray of particles resulting from the approximate line source produced in such inelastic collisions then gives rise to events with a strong correlation between particles produced over a large range of both positive and negative rapidity. We suggest an additional variable that is sensitive to such a line source which is related to a commonly used measure, ellipticity.
An unexpected result at the RHIC and the LHC is the observation that high-multiplicity hadronic events in heavy-ion and proton-proton collisions are distributed as two ridges, approximately flat in rapidity and opposite in azimuthal angle. We propose
Recently, the CMS Collaboration has published identified particle transverse momentum spectra in high multiplicity events at LHC energies $sqrt s $ = 0.9-13 TeV. In the present work the transverse momentum spectra have been analyzed in the framework
The increase of strange-particle yields relative to pions versus charged-particle multiplicity in proton-proton (pp) collisions at the LHC is usually described by microscopic or hydrodynamical models as a result of the increasing density of produced
Kinematic correlations for pairs of beauty hadrons, produced in high energy proton-proton collisions, are studied. The data sample used was collected with the LHCb experiment at centre-of-mass energies of 7 and 8 TeV and corresponds to an integrated
We analyze the measured spectra of $pi^pm$, $K^pm$, $p$($bar p$) in $pp$ collisions at $sqrt {s}$ = 0.9, 2.76 and 7 TeV, in the light of blast-wave model to extract the transverse radial flow velocity and kinetic temperature at freeze-out for the sys