ﻻ يوجد ملخص باللغة العربية
In pattern-forming systems, localized patterns are states of intermediate complexity between fully extended ordered patterns and completely irregular patterns. They are formed by stationary fronts enclosing an ordered pattern inside an homogeneous background. In two dimensions, the ordered pattern is most often hexagonal and the conditions for fronts to stabilize are still unknown. In this letter, we show how the locking of these fronts depends on their orientation relative to the pattern. The theory rests on general asymptotic arguments valid when the spatial scale of the front is slow compared to that of the hexagonal pattern. Our analytical results are confirmed by numerical simulations with the Swift-Hohenberg equation, relevant to hydrodynamical and buckling instabilities, and a nonlinear optical cavity model.
Self-organization, the ability of a system of microscopically interacting entities to shape macroscopically ordered structures, is ubiquitous in Nature. Spatio-temporal patterns are abundantly observed in a large plethora of applications, encompassin
We explain some pde2path setups for pattern formation in 1D, 2D and 3D. A focus is on new pde2path functions for branch switching at steady bifurcation points of higher multiplicity, typically due to discrete symmetries, but we also review general co
Pattern formation in systems with a conserved quantity is considered by studying the appropriate amplitude equations. The conservation law leads to a large-scale neutral mode that must be included in the asymptotic analysis for pattern formation near
Neurons are often connected, spatially and temporally, in phenomenal ways that promote wave propagation. Therefore, it is essential to analyze the emergent spatiotemporal patterns to understand the working mechanism of brain activity, especially in c
The Nikolaevskiy equation has been proposed as a model for seismic waves, electroconvection and weak turbulence; we show that it can also be used to model transverse instabilities of fronts. This equation possesses a large-scale Goldstone mode that s