ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Magnetic Misalignment on Protobinary Evolution

248   0   0.0 ( 0 )
 نشر من قبل Bo Zhao
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The majority of solar-type stars reside in multiple systems, especially binaries. They form in dense cores of molecular clouds that are observed to be significantly magnetized. Our previous study shows that magnetic braking can tighten the binary separation during the protostellar mass accretion phase by removing the angular momentum of the accreting material. Recent numerical calculations of single star formation have shown that misalignment between the magnetic field and rotation axis may weaken both magnetic braking and the associated magnetically driven outflows. These two effects allow for disk formation even in strongly magnetized cores. Here we investigate the effects of magnetic field misalignment on the properties of protobinaries. Somewhat surprisingly, the misaligned magnetic field is more efficient at tightening the binary orbit compared to the aligned field. The main reason is that the misalignment weakens the magnetically-driven outflow, which allows more material to accrete onto the binary. Even though the specific angular momentum of this inner material is higher than in the aligned case, it is insufficient to compensate for the additional mass. A corollary of this result is that a weaker field is required to achieve the same degree of inward migration when the field is tilted relative to the rotation axis. Large field misalignment also helps to produce rotationally-supported circumbinary disks even for relatively strong magnetic fields, by weakening the magnetically-dominated structure close to the binary. Our result may provide an explanation for the circumbinary disks detected in recent SMA and ALMA observations.



قيم البحث

اقرأ أيضاً

The formation of circumstellar disks is investigated using three-dimensional resistive magnetohydrodynamic simulations, in which the initial prestellar cloud has a misaligned rotation axis with respect to the magnetic field. We examine the effects of (i) the initial angle difference between the global magnetic field and the cloud rotation axis ($theta_0$) and (ii) the ratio of the thermal to gravitational energy ($alpha_0$). We study $16$ models in total and calculate the cloud evolution until $sim ! 5000$ yr after protostar formation. Our simulation results indicate that an initial non-zero $theta_0$ ($> 0$) promotes the disk formation but tends to suppress the outflow driving, for models that are moderately gravitationally unstable, $alpha_0 lesssim 1$. In these models, a large-sized rotationally-supported disk forms and a weak outflow appears, in contrast to a smaller disk and strong outflow in the aligned case ($theta_0 = 0$). Furthermore, we find that when the initial cloud is highly unstable with small $alpha_0$, the initial angle difference $theta_0$ does not significantly affect the disk formation and outflow driving.
We present results of 1.3 mm dust polarization observations toward 16 nearby, low-mass protostars, mapped with ~2.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with ou tflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotation axes of circumstellar disks, and that the outflows have not disrupted the fields in the surrounding material, then our results imply that the disks are not aligned with the fields in the cores from which they formed.
We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pre ssure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have then employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B > 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (Teff) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection owing to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with Teff < 10,000 K cool significantly slower than non-magnetic degenerates.
Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, $10^2au$-scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed magnetic braking catastrophe. A possible resolution to this problem, proposed by citeauthor{HennebelleCiardi2009} and citeauthor{Joos+2012}, is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of citeauthor{Joos+2012} that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio $gtrsim 5$, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of $90degree$. If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio $sim 2$), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, the misalignment does not completely solve the problem of catastrophic magnetic braking in general.
The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. We wish to inv estigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 muG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 muG interstellar magnetic field and a 10,000 K interstellar medium and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with a warm, high-density ISM the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble. The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا