ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of fundamental limitations to statistical detection of redshifted HI from the epoch of reionization

138   0   0.0 ( 0 )
 نشر من قبل Nithyanandan Thyagarajan
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we explore for the first time the relative magnitudes of three fundamental sources of uncertainty, namely, foreground contamination, thermal noise and sample variance in detecting the HI power spectrum from the Epoch of Reionization (EoR). We derive limits on the sensitivity of a Fourier synthesis telescope to detect EoR based on its array configuration and a statistical representation of images made by the instrument. We use the Murchison Widefield Array (MWA) configuration for our studies. Using a unified framework for estimating signal and noise components in the HI power spectrum, we derive an expression for and estimate the contamination from extragalactic point-like sources in three-dimensional k-space. Sensitivity for EoR HI power spectrum detection is estimated for different observing modes with MWA. With 1000 hours of observing on a single field using the 128-tile MWA, EoR detection is feasible (S/N > 1 for $klesssim 0.8$ Mpc$^{-1}$). Bandpass shaping and refinements to the EoR window are found to be effective in containing foreground contamination, which makes the instrument tolerant to imaging errors. We find that for a given observing time, observing many independent fields of view does not offer an advantage over a single field observation when thermal noise dominates over other uncertainties in the derived power spectrum.



قيم البحث

اقرأ أيضاً

The detection of the Epoch of Reionization (EoR) in the redshifted 21-cm line is a challenging task. Here we formulate the detection of the EoR signal using the drift scan strategy. This method potentially has better instrumental stability as compare d to the case where a single patch of sky is tracked. We demonstrate that the correlation time between measured visibilities could extend up to 1-2 hr for an interferometer array such as the Murchison Widefield Array (MWA), which has a wide primary beam. We estimate the EoR power based on cross-correlation of visibilities across time and show that the drift scan strategy is capable of the detection of the EoR signal with comparable/better signal-to-noise as compared to the tracking case. We also estimate the visibility correlation for a set of bright point sources and argue that the statistical inhomogeneity of bright point sources might allow their separation from the EoR signal.
93 - Wenxiao Xu , Yidong Xu , Bin Yue 2019
The neutral hydrogen (HI) and its 21 cm line are promising probes to the reionization process of the intergalactic medium (IGM). To use this probe effectively, it is imperative to have a good understanding on how the neutral hydrogen traces the under lying matter distribution. Here we study this problem using semi-numerical modeling by combining the HI in the IGM and the HI from halos during the epoch of reionization (EoR), and investigate the evolution and the scale-dependence of the neutral fraction bias as well as the 21 cm line bias. We find that the neutral fraction bias on large scales is negative during reionization, and its absolute value on large scales increases during the early stage of reionization and then decreases during the late stage. During the late stage of reionization, there is a transition scale at which the HI bias transits from negative on large scales to positive on small scales, and this scale increases as the reionization proceeds to the end.
The implication of primordial magnetic-field-induced structure formation for the HI signal from the epoch of reionization is studied. Using semi-analytic models, we compute both the density and ionization inhomogeneities in this scenario. We show tha t: (a) The global HI signal can only be seen in emission, unlike in the standard $Lambda$CDM models, (b) the density perturbations induced by primordial fields, leave distinctive signatures of the magnetic field Jeans length on the HI two-point correlation function, (c) the length scale of ionization inhomogeneities is $la 1 rm Mpc$. We find that the peak expected signal (two-point correlation function) is $simeq 10^{-4} rm K^2$ in the range of scales $0.5hbox{-}3 rm Mpc$ for magnetic field strength in the range $5 times 10^{-10} hbox{-}3 times 10^{-9} rm G$. We also discuss the detectability of the HI signal. The angular resolution of the on-going and planned radio interferometers allows one to probe only the largest magnetic field strengths that we consider. They have the sensitivity to detect the magnetic field-induced features. We show that thefuture SKA has both the angular resolution and the sensitivity to detect the magnetic field-induced signal in the entire range of magnetic field values we consider, in an integration time of one week.
We present a study of the impact of a bright quasar on the redshifted 21cm signal during the Epoch of Reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changi ng the size and morphology of the H II regions they are born in. We choose stellar and quasar luminosities in a way that is favourable to seeing such an effect. We find that even the most luminous of our quasar models is not able to increase the size of its native H II region substantially beyond those of large H II regions produced by clustered stellar sources alone. However, the quasar H II region is found to be more spherical. We next investigate the prospects of detecting such H II regions in the redshifted 21cm data from the Low Frequency Array (LOFAR) by means of a matched filter technique. We find that H II regions with radii ~ 25 comoving Mpc or larger should have a sufficiently high detection probability for 1200 hours of integration time. Although the matched filter can in principle distinguish between more and less spherical regions, we find that when including realistic system noise this distinction can no longer be made. The strong foregrounds are found not to pose a problem for the matched filter technique. We also demonstrate that when the quasar position is known, the redshifted 21cm data can still be used to set upper limits on the ionizing photon rate of the quasar. If both the quasar position and its luminosity are known, the redshifted 21 cm data can set new constrains on quasar lifetimes.
59 - Shiv K. Sethi 2005
We investigate the all-sky signal in redshifted atomic hydrogen (HI) line from the reionization epoch. HI can be observed in both emission and absorption depending on the ratio of Lyman-$alpha$ to ionizing flux and the spectrum of the radiation in so ft xray. We also compute the signal from pre-reionization epoch and show that within the uncertainty in cosmological parameters, it is fairly robust. The main features of HI signal can be summarized as: (a) The pre-ionized HI can be seen in absorption for $ u simeq 10hbox{--}40 rm MHz$; the maximum signal strength is $simeq 70hbox{--}100 rm mK$. (b) A sharp absorption feature of width $la 5 rm MHz$ might be observed in the frequency range $simeq 50 hbox{--}100 rm MHz$, depending on the reionization history. The strength of the signal is proportional to the ratio of the Lyman-$alpha$ and the hydrogen-ionizing flux and the spectral index of the radiation field in soft xray (c) At larger frequencies, HI is seen in emission with peak frequency between $60hbox{--}100 rm MHz$, depending on the ionization history of the universe; the peak strength of this signal is $simeq 50 rm mK$. From Fisher matrix analysis, we compute the precision with which the parameters of the model can be estimated from a future experiment: (a) the pre-reionization signal can constrain a region in the $Omega_b h^2$--$Omega_m h^2$ plane (b) HI observed in emission can be used to give precise, $la 1 %$, measurement of the evolution of the ionization fraction in the universe, and (c) the transition region from absorption to emission can be used as a probe of the spectrum of ionizing sources; in particular, the HI signal in this regime can give reasonably precise measurement of the fraction of the universe heated by soft x-ray photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا