ﻻ يوجد ملخص باللغة العربية
We report a calculation reduction method for color computer-generated holograms (CGHs) using color space conversion. Color CGHs are generally calculated on RGB space. In this paper, we calculate color CGHs in other color spaces: for example, YCbCr color space. In YCbCr color space, a RGB image is converted to the luminance component (Y), blue-difference chroma (Cb) and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well-recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space.
Multiple color stripes have been employed for structured light-based rapid range imaging to increase the number of uniquely identifiable stripes. The use of multiple color stripes poses two problems: (1) object surface color may disturb the stripe co
The representation of consistent mixed reality (XR) environments requires adequate real and virtual illumination composition in real-time. Estimating the lighting of a real scenario is still a challenge. Due to the ill-posed nature of the problem, cl
Research interest in rapid structured-light imaging has grown increasingly for the modeling of moving objects, and a number of methods have been suggested for the range capture in a single video frame. The imaging area of a 3D object using a single p
Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for
We present a simple but effective technique for measuring angular variation in $R_V$ across the sky. We divide stars from the Pan-STARRS1 catalog into Healpix pixels and determine the posterior distribution of reddening and $R_V$ for each pixel using