ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the nature of the unidentified gamma-ray sources III: gamma-ray blazar-like counterparts at low radio frequencies

223   0   0.0 ( 0 )
 نشر من قبل Francesco Massaro
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Massaro




اسأل ChatGPT حول البحث

About one third of the gamma-ray sources listed in the second Fermi LAT catalog (2FGL) have no firmly established counterpart at lower energies so being classified as unidentified gamma-ray sources (UGSs). Here we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with Westerbork Synthesis Radio Telescope (WSRT) in the northern hemisphere. First we investigate the low-frequency radio properties of blazars, the largest known population of gamma-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO VLA Sky survey (NVSS). We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in literature to look for infrared and optical counterparts of the gamma-ray blazar candidates selected with the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research we identify 23 new gamma-ray blazar candidates out of 32 UGSs investigated. Comparison with previous results on the UGSs are also presented. Finally, we speculate on the advantages on the use of the low-frequency radio observations to associate UGSs and to search for gamma-ray pulsar candidates.



قيم البحث

اقرأ أيضاً

121 - M. Nori 2015
According to the second Fermi LAT Catalog (2FGL), about one third of the gamma-ray sources listed have no assigned counterparts at lower energies. Many statistical methods have been developed to find proper counterparts for these sources. We explore the sky area covered at low radio frequency by Westerbork in the Southern Hemisphere (WISH) survey to search for blazar-like associations among the unidentified gamma-ray sources listed in the 2FGL (UGSs). Searching the WISH and NRAO VLA Sky Survey (NVSS) radio surveys within the positional uncertainty regions of the 2FGL UGSs, we select as gamma-ray blazar candidates the radio sources characterized by flat radio spectra between 352 MHz and 1400 MHz. We propose new gamma-ray blazar associations for eight UGSs and we also discuss their spectral properties at low radio frequencies. We compare the radio flux density distribution of the low radio frequency gamma-ray blazar candidates with that of gamma-ray blazars associated with other methods. We find significant differences between these distributions. Finally, we discuss the results of this association method and its possible applicability to other regions of the sky and future radio surveys.
We present a new method for identifying blazar candidates by examining the locus, i.e. the region occupied by the Fermi gamma-ray blazars in the three-dimensional color space defined by the WISE infrared colors. This method is a refinement of our pre vious approach that made use of the two-dimensional projection of the distribution of WISE gamma-ray emitting blazars (the Strip) in the three WISE color-color planes (Massaro et al. 2012a). In this paper, we define the three-dimensional locus by means of a Principal Component (PCs) analysis of the colors distribution of a large sample of blazars composed by all the ROMA-BZCAT sources with counterparts in the WISE All-Sky Catalog and associated to gamma-ray source in the second Fermi LAT catalog (the WISE Fermi Blazars sample, WFB). Our new procedure yields a total completeness of c~81% and total efficiency of e~97%. We also obtain local estimates of the efficiency and completeness as functions of the WISE colors and galactic coordinates of the candidate blazars. The catalog of all WISE candidate blazars associated to the WFB sample is also presented, complemented by archival multi-frequency information for the alternative associations. Finally, we apply the new association procedure to all gamma-ray blazars in the 2FGL and provide a catalog containing all the gamma-ray candidates blazars selected according to our procedure.
The view of the gamma-ray universe is being continuously expanded by space high energy (HE) and ground based very-high energy (VHE) observatories. Yet, the angular resolution limitation still precludes a straightforward identification of these gamma- ray emitting sources. Radio observations are an effective tool for searching their possible counterparts at lower energies because the same population of relativistic electrons responsible for radio emission can also produce HE/VHE emission via inverse-Compton scattering. The Cygnus region is crowded by many gamma-ray sources, most of them remaining unidentified. In order to find possible counterparts to unidentified gamma-ray sources, we carried out a deep survey of the Cygnus region using the Giant Metrewave Radio Telescope at 610 MHz and 325 MHz. We did a detailed search for counterparts in the error circle of HE/VHE sources. We report 36 radio sources found in the error ellipse of 15 HE sources, and 11 in those of VHE sources. Eight sources have very steep radio spectral index alpha <-1.5, which are most likely to be pulsars and will be followed up for periodicity search. Such a significant number of pulsar candidates within the error circle of HE/VHE sources prompts fresh look at the energetics and efficacy of pulsars and pulsar wind nebulae in this context.
Observations of pulsars with the Large Area Telescope (LAT) on the Fermi satellite have revolutionized our view of the gamma-ray pulsar population. For the first time, a large number of young gamma-ray pulsars have been discovered in blind searches o f the LAT data. More generally, the LAT has discovered many new gamma-ray sources whose properties suggest that they are powered by unknown pulsars. Radio observations of gamma-ray sources have been key to the success of pulsar studies with the LAT. For example, radio observations of LAT-discovered pulsars provide constraints on the relative beaming fractions, which are crucial for pulsar population studies. Also, radio searches of LAT sources with no known counterparts have been very efficient, with the discovery of over forty millisecond pulsars. I review radio follow-up studies of LAT-discovered pulsars and unidentified sources, and discuss some of the implications of the results.
We present a catalog of radio-loud candidate gamma-ray emitting blazars with WISE mid-infrared colors similar to the colors of confirmed gamma-ray blazars. The catalog is assembled from WISE sources detected in all four WISE filters, with colors comp atible with the three-dimensional locus of the WISE gamma-ray emitting blazars, and which can be spatially cross-matched with radio sources from either one of the three radio surveys: NVSS, FIRST and/or SUMSS. Our initial WISE selection uses a slightly modified version of previously successful algorithms. We then select only the radio-loud sources using a measure of the radio-to-IR flux, the q22 parameter, which is analogous to the q24 parameter known in the literature but which instead uses the WISE band-four flux at 22 micron. Our final catalog contains 7855 sources classified as BL Lacs, FSRQs or mixed candidate blazars; 1295 of these sources can be spatially re-associated with confirmed blazars. We describe the properties of the final catalog of WISE blazar-like radio-loud sources and consider possible contaminants. Finally, we discuss why this large catalog of candidate gamma-ray emitting blazars represents a new and useful resource to address the problem of finding low energy counterparts to currently unidentified high-energy sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا