Chiral edge modes of topological insulators and Hall states exhibit non-trivial behavior of conductance in the presence of impurities or additional channels. We will present a simple formula for the conductance through a chiral edge mode coupled to a disordered bulk. For a given coupling matrix between the chiral mode and bulk modes, and a Green function matrix of bulk modes in real space, the renormalized Green function of the chiral mode is expressed in closed form as a ratio of determinants. We demonstrate the usage of the formula in two systems: i) a 1d wire with random onsite impurity potentials for which we found the disorder averaging is made simpler with the formula, and ii) a quantum Hall fluid with impurities in the bulk for which the phase picked up by the chiral mode due to the scattering with the impurities can be conveniently estimated.